首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   25篇
  国内免费   1篇
测绘学   5篇
大气科学   9篇
地球物理   84篇
地质学   88篇
海洋学   48篇
天文学   37篇
自然地理   21篇
  2022年   3篇
  2021年   3篇
  2020年   6篇
  2019年   1篇
  2018年   9篇
  2017年   9篇
  2016年   11篇
  2015年   12篇
  2014年   13篇
  2013年   21篇
  2012年   17篇
  2011年   18篇
  2010年   11篇
  2009年   24篇
  2008年   21篇
  2007年   17篇
  2006年   17篇
  2005年   13篇
  2004年   12篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1973年   1篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
1.
2.
Moored sediment traps were deployed from January 2004 through December 2007 at depths of 550 and 800 m in San Pedro Basin (SPB), CA (33°33.0′N, 118°26.5′W). Additionally, floating sediment traps were deployed at 100 and 200 m for periods of 12-24 h during spring 2005, fall 2007, and spring 2008. Average annual fluxes of mass, particulate organic carbon (POC), ??13Corg, particulate organic nitrogen (PON), ??15N-PON, biogenic silica (bSiO2), calcium carbonate (CaCO3), and detrital material (non-biogenic) were coupled with climate records and used to examine sedimentation patterns, vertical flux variability, and organic matter sources to this coastal region. Annual average flux values were determined by binning data by month and averaging the monthly averages. The average annual fluxes to 550 m were 516±42 mg/m2 d for mass (sdom of the monthly averages, n=117), 3.18±0.26 mmol C/m2 d for POC (n=111), 0.70±0.05 mmol/m2 d for CaCO3 (n=110), 1.31±0.21 mmol/m2 d for bSiO2 (n=115), and 0.35±0.03 mmol/m2 d for PON (n=111). Fluxes to 800 and to 550 m were similar, within 10%. Annual average values of ??13Corg at 550 m were −21.8±0.2‰ (n=108), and ??15N averages were 8.9±0.2‰ (n=95). The timing of both high and low flux particle collection was synchronous between the two traps. Given the frequency of trap cup rotation (4-11 days), this argues for particle settling rates ≥83 m/d for both high and low flux periods. The moored traps were deployed over one of the wettest (2004-2005, 74.6 cm rainfall) and driest (2006-2007, 6.6 cm) rain years on record. There was poor correlation (Pearson's correlation coefficient, 95% confidence interval) of detrital mass flux with: Corg/N ratio (r=0.10, p=0.16); ??15N (r=−0.19, p=0.02); and rainfall (r=0.5, p=0.43), suggesting that runoff does not immediately cause increases in particle fluxes 15 km offshore. ??13Corg values suggest that most POC falling to the basin floor is marine derived. Coherence between satellite-derived chlorophyll a records from the trap location (±9 km2 resolution) and SST data indicates that productivity and export occurs within a few days of upwelling and both of these parameters are reasonable predictors of POC export, with a time lag of a few days to 2 weeks (with no time lag—SeaWiFS chlorophyll a and POC flux, r=0.25, p=0.0014; chlorophyll a and bSiO2 flux, r=0.28, p=0.0002).  相似文献   
3.
4.
5.
EVA: GPS-based extended velocity and acceleration determination   总被引:1,自引:0,他引:1  
In this work, a new GPS carrier phase-based velocity and acceleration determination method is presented that extends the effective range of previous techniques. The method is named ‘EVA’, and may find applications in fields such as airborne gravimetry when rough terrain or water bodies make difficult or impractical to set up nearby GPS reference receivers. The EVA method is similar to methods such as Kennedy (Precise acceleration determination from carrier phase measurements. In: Proceedings of the 15th international technical meeting of the satellite division of the Institute of Navigation. ION GPS 2002, Portland pp 962–972, 2002b) since it uses L1 carrier phase observables for velocity and acceleration determination. However, it introduces a wide network of stations and it is independent of precise clock information because it estimates satellite clock drifts and drift rates ‘on-the-fly’, requiring only orbit data of sufficient quality. Moreover, with EVA the solution rate is only limited by data rate, and not by the available precise satellite clocks data rate. The results obtained are more robust for long baselines than the results obtained with the reference Kennedy method. An advantage of being independent of precise clock information is that, beside IGS Final products, also the Rapid, Ultra-Rapid (observed) and Ultra-Rapid (predicted) products may be used. Moreover, the EVA technique may also use the undifferenced ionosphere-free carrier phase combination (LC), overcoming baseline limitations in cases where ionosphere gradients may be an issue and very low biases are required. During the development of this work, some problems were found in the velocity estimation process of the Kennedy method. The sources of the problems were identified, and an improved version of the Kennedy method was used for this research work. An experiment was performed using a light aircraft flying over the Pyrenees, showing that both EVA and the improved Kennedy methods are able to cope with the dynamics of mountainous flight. A RTK-derived solution was also generated, and when comparing the three methods to a known zero-velocity reference the results yielded similar performance. The EVA and the improved-Kennedy methods outperformed the RTK solutions, and the EVA method provided the best results in this experiment. Finally, both the improved version of the Kennedy method and the EVA method were applied to a network in equatorial South America with baselines of more than 1,770 km, and during local noon. Under this tough scenario, the EVA method showed a clear advantage for all components of velocity and acceleration, yielding better and more robust results.  相似文献   
6.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
A fine‐grained slope that exhibits slow movement rates was investigated to understand how geohydrological processes contribute to a consecutive development of mass movements in the Vorarlberg Alps, Austria. For that purpose intensive hydrometeorological, hydrogeological and geotechnical observations as well as surveying of surface movement rates were conducted during 1998–2001. Subsurface water dynamics at the creeping slope turned out to be dominated by a three‐dimensional pressure system. The pressure reaction is triggered by fast infiltration of surface water and subsequent lateral water flow in the south‐western part of the hillslope. The related pressure signal was shown to propagate further downhill, causing fast reactions of the piezometric head at 5·5 m depth on a daily time scale. The observed pressure reactions might belong to a temporary hillslope water body that extends further downhill. The related buoyancy forces could be one of the driving forces for the mass movement. A physically based hydrological model was adopted to model simultaneously surface and subsurface water dynamics including evapotranspiration and runoff production. It was possible to reproduce surface runoff and observed pressure reactions in principle. However, as soil hydraulic functions were only estimated on pedotransfer functions, a quantitative comparison between observed and simulated subsurface dynamics is not feasible. Nevertheless, the results suggest that it is possible to reconstruct important spatial structures based on sparse observations in the field which allow reasonable simulations with a physically based hydrological model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
8.
Growth faults in gravity-driven extensional provinces are dominated by coast-parallel trends, but coast-perpendicular (transverse) trends are far less documented. The Clemente–Tomas fault in the inner Texas shelf has corrugations that are transverse to the fault and that plunge downdip. A large (8500 km2), high-quality, 3D seismic survey allows a uniquely encompassing perspective into hanging-wall deformation above this corrugated fault surface. Synextensional strata in the hanging wall are folded into alternating transverse ridges and synclines, typically spaced 10 km apart. Forward modelling in dip profiles of an extensional fault having three ramps produces ramp basin-rollover pairs that compare with the seismically revealed ridges and synclines. As they translated down the undulose fault plane, ramp basins and rollovers were juxtaposed along strike, forming the hanging-wall ridges and synclines observed offshore Texas. Fault-surface corrugations correlate broadly with footwall structure. We infer that corrugations on the Clemente–Tomas fault formed by evacuation of an allochthonous salt canopy emplaced in the late Eocene to early Oligocene. Early salt evacuation (Oligocene) created an undulose topography that influenced incipient Clemente-Tomas fault segments as they merged to form an inherently undulose fault. Late salt evacuation (early Miocene) further deformed this fault surface.  相似文献   
9.
This work provides five new U–Pb zircon dating and the corresponding Nd isotope data for felsic granulites from the south Itabuna-Salvador-Curaçá Block (ISCB), in the São Francisco Craton, Brazil. Three major sets of felsic granulites can be recognised. The oldest set is tonalitic in composition and of TTG affinity. It is Archaean in age with magmatic zircon cores dated at 2675 ± 11 Ma by LA-ICPMS and up to ca 2.7–2.9 Ga by SHRIMP on an other sample. It exhibits epsilon Nd values between ?8 and ?11 at 2.1 Ga. This Nd signature is similar to that of granulites found in the western Archaean Jequié Block. Cartographically, this set of Archaean terrains represents at least 50% of the granulites in the studied area. The second set corresponds to a Palaeoproterozoic calc-alkaline tonalitic suite with zircon ages from 2019 ± 19 Ma to 2191 ± 10 Ma and epsilon Nd values between ?3 and ?4 at 2.1 Ga, corresponding partially to a newly formed crust. The third set of granulites is also Palaeoproterozoic. It is shoshonitic to monzonitic in composition and synchronous with the high grade metamorphism dated by metamorphic zircons at 2086 ± 7 Ma (average of five samples). The Nd isotope signature for this alkaline set is similar to that of the Palaeoproterozoic calc-alkaline one. Nd isotopes appear to be a very efficient tool to distinguish Archaean from Palaeoproterozoic felsic protoliths in granulitic suites of the Itabuna-Salvador-Curaçá Block (ISCB). Finally, the southern part of the ISCB is composed of a mixture of Archaean and Palaeoproterozoic protoliths, in similar amounts, suggesting that it was probably an active margin between 2.1 and 2.2 Ga located on the eastern border of the Archaean Jequié Block. A major crustal thickening process occurred at ca 2.09 Ga in the ISCB and seems significantly younger towards the west, in the Jequié granulites, where an average of 2056 ± 9 Ma is determined for the high grade event.  相似文献   
10.
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号