首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   20篇
  国内免费   3篇
测绘学   7篇
大气科学   19篇
地球物理   72篇
地质学   91篇
海洋学   32篇
天文学   31篇
自然地理   38篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   8篇
  2018年   7篇
  2017年   5篇
  2016年   13篇
  2015年   4篇
  2014年   13篇
  2013年   21篇
  2012年   20篇
  2011年   32篇
  2010年   26篇
  2009年   22篇
  2008年   8篇
  2007年   13篇
  2006年   9篇
  2005年   14篇
  2004年   8篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1996年   1篇
  1994年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1979年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有290条查询结果,搜索用时 31 毫秒
1.
2.
为了确定控制末次冰消期的机制以及引起冰消期事件的顺序,最重要的是获得应用于大陆和海洋两者的气候记录的时间结构。放射性碳测年已经广泛应用于海洋沉积物的日历测年,但它是建立在表层水的表观年龄 (相对于大气层来说 )保持不变的假设上的。这里我们提出了北大西洋 40° N以北的表层水的表观年龄 (或储层年龄 )在过去 20 ka中的变化证据,在两个岩心中,我们发现了在 Heinrich 1 (15 ka BP)结束的地方,表层水表观年龄比今天大 1230± 600 a和 1940± 750 a,在新仙女木冷期结束的地方比今天大 820± 430 a 和 1010± 340 a。在 Bolling_Allerod暖期,两个老的储层年龄之间,表层水表观年龄可以与目前的值进行比较。我们的研究结果证实冰心年代学和整个冰消期的北大西洋海洋记录是一致的。因此,这表示了 40° N以北的北大西洋海洋碳测年需要作这些明显可变效应的校正。  相似文献   
3.
Flower and fruit production of the abundant, tall, long-lived, dioecious, surface-pollinating seagrass species Enhalus acoroides (L.) Royle were estimated at seven sites in the reef flats off Bolinao (NW Luzon, The Philippines) featuring different fragmentation of the seagrass meadows. Fragmentation of the seagrass meadow was quantified as cover of E. acoroides and all seagrass species present in 20×20 m plots. E. acoroides and overall seagrass cover were correlated positively. The proportion of female flowers of E. acoroides that developed a fruit increased sharply as overall seagrass cover was around 50%. Apparent sex ratio bore no relationship with overall seagrass cover. This threshold-type of relationship suggests that fragmentation of seagrass meadows can have a major effect on the reproductive output of this species. A possible mechanism underlying these results would be a non-linear increase of the efficiency of trapping the surface-dispersed pollen with increasing seagrass canopy density. This provides the first evidence based on real data that fragmentation can affect the population dynamics of seagrass species.  相似文献   
4.
Estimating biomass of microphytobenthos (MPB) on intertidal mud flats is extremely difficult due to their patchy occurrence, especially at the scale of an entire mud flat. We tested two optical approaches that can be applied in situ: spectral reflectance and chlorophyll fluorescence. These two approaches were applied in 4 European estuaries with different sediment characteristics. At each site, paired replicate measurements of hyperspectral reflectance, chlorophyll fluorescence (after 15 min dark adaptation, Fo 15), sediment water content, and chlorophylla concentrations were taken (including breakdown products: [chla+phaeo]). Sediments were further characterized by grain size and organic content analysis. The spectral signatures of tidal flats dominated by benthic microalgae, mainly diatoms, could be easily distinguished from sites dominated by macrophytes; we present a 3 waveband algorithm that can be used to detect the presence of macrophytes. The normalized difference vegetation index (NDVI) was found to be most strongly correlated to sediment [chla+phaeo], except for the predominantly sandy Sylt stations. Fo 15 was also significantly correlated to sediment [chla+phaeo] in all but one grid (Sylt grid A). Our results suggest that the functional relationships (i.e., the slopes) between NDVI or fluorescence and [chla+ phaeo] were not significantly different in the muddier grids, although the intercepts could differ significantly, especially for Fo 15. This suggests a mismatch of the optical depth seen by the reflectometer or fluorometer and the depth sampled for pigment analysis. NDVI appears to be a robust proxy for sediment [chla+phaeo] and can be used to quantify MPB biomass in muddy sediments of mid latitude estuaries.  相似文献   
5.
6.
7.
A paleolimnological evaluation of cladoceran microfossils was initiated to study limnological changes in Lake Apopka, a large (125 km2), shallow (mean depth = 1.6 m), warm, polymictic lake in central Florida. The lake switched from macrophyte to algal dominance in the late 1940s, creating a Sediment Discontinuity Layer (SDL) that can be visually used to separate sediments derived from macrophytes and phytoplankton. Cladoceran microfossils were enumerated as a means of corroborating extant eutrophication data from the sediment record. Inferences about the timing and trajectory of eutrophication were made using the cladoceran-based paleo-reconstruction. The cladoceran community of Lake Apopka began to change abruptly in both total abundance and relative percent abundance just before the lake shifted from macrophyte to algal dominance. Alona affinis, a mud-vegetation associated cladoceran, disappeared before the SDL was formed. Planktonic and benthic species also began to increase below the SDL, indicating an increase in production of both planktonic and benthic species. Chydorus cf. sphaericus, an indicator of nutrient loading, increased relative to all other cladocerans beginning in the layer below the SDL and continuing upcore. Changes in the transitional sediment layer formed before the lake switched to phytoplankton dominance, including an increase in total phosphorus concentration, suggest a more gradual eutrophication process than previously reported. Data from this study supported conclusions from other paleolimnological studies that suggested anthropogenic phosphorus loading was the key factor in the hypereutrophication of Lake Apopka.  相似文献   
8.
The reliability of phytolith assemblage analysis for characterizing Mediterranean vegetation is investigated in this study. Phytolith assemblages are extracted from modern and buried Holocene soils from the middle Rhône valley (France). The relation between modern phytolith assemblages and the surrounding vegetation, as well as between fossil assemblages and contemporaneous vegetation, already reconstructed through other proxies, is discussed. We demonstrate that the main northwestern Mediterranean biomes are well distinguished by soil phytolith assemblage analysis. In particular, the density of pine and nonconiferous trees (densities expressed relatively to the grass cover) and the overall degree of opening of the vegetation appear well recorded by three phytolith indexes. North Mediterranean vegetation changes during the Holocene period, mainly tree line shifts, pine wood development and deforestation are poorly documented, due to the scarcity of proxy-preserving sites. Phytolith assemblage analysis of soils, buried soils, and sediments appears to be a promising technique to fill this gap.  相似文献   
9.
Recent Rapid Regional Climate Warming on the Antarctic Peninsula   总被引:15,自引:1,他引:15  
The Intergovernmental Panel on Climate Change (IPCC) confirmed that mean global warming was 0.6 ± 0.2 °C during the 20th century and cited anthropogenic increases in greenhouse gases as the likely cause of temperature rise in the last 50 years. But this mean value conceals the substantial complexity of observed climate change, which is seasonally- and diurnally-biased, decadally-variable and geographically patchy. In particular, over the last 50 years three high-latitude areas have undergone recent rapid regional (RRR) warming, which was substantially more rapid than the global mean. However, each RRR warming occupies a different climatic regime and may have an entirely different underlying cause. We discuss the significance of RRR warming in one area, the Antarctic Peninsula. Here warming was much more rapid than in the rest of Antarctica where it was not significantly different to the global mean. We highlight climate proxies that appear to show that RRR warming on the Antarctic Peninsula is unprecedented over the last two millennia, and so unlikely to be a natural mode of variability. So while the station records do not indicate a ubiquitous polar amplification of global warming, the RRR warming on the Antarctic Peninsula might be a regional amplification of such warming. This, however, remains unproven since we cannot yet be sure what mechanism leads to such an amplification. We discuss several possible candidate mechanisms: changing oceanographic or changing atmospheric circulation, or a regional air-sea-ice feedback amplifying greenhouse warming. We can show that atmospheric warming and reduction in sea-ice duration coincide in a small area on the west of the Antarctic Peninsula, but here we cannot yet distinguish cause and effect. Thus for the present we cannot determine which process is the probable cause of RRR warming on the Antarctic Peninsula and until the mechanism initiating and sustaining the RRR warming is understood, and is convincingly reproduced in climate models, we lack a sound basis for predicting climate change in this region over the coming century.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号