首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   1篇
地质学   1篇
自然地理   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有7条查询结果,搜索用时 296 毫秒
1
1.
—?The aim of our study consists of analyzing potentially non-double-couple seismic events recorded at regional distances. In order to define the nature of the seismic source, a moment tensor inversion is carried out as this method is general enough not to initially constrain the source mechanism. In this paper we present an application to a seismic event induced by a mine collapse which occurred near the town of Halle in Germany. Because of its induced nature, many parameters such as the location and geometry of this seismic source are known. This information allows us to test the influence of inadequate propagation modeling on the moment tensor obtained from the inversion. Green's functions have been computed with the reflectivity method in a flat layered medium, using the European model EurID (Du et? al., 1998; Dufumier et al., 1997). From the inversion of P-wave seismograms recorded by the German Regional Seismic Network will, we obtained a source time function which can be decomposed into two subevents. The first one has a large isotropic part and a deviatoric mechanism with near vertical nodal planes. No volume change is observed for the second subevent, but a deviatoric component opposite of the first one. The addition of S-waves does not change the results of the inversion which are stable. Surface waves were not used because of their poor dispersion curves. Based on the moment tensor obtained from these inversions, the physical process at the source is compatible with a large cavity collapse.  相似文献   
2.
3.
4.
Numerical simulation of the propagation of P waves in fractured media   总被引:1,自引:0,他引:1  
We study the propagation of P waves through media containing open fractures by performing numerical simulations. The important parameter in such problems is the ratio between crack length and incident wavelength. When the wavelength of the incident wavefield is close to or shorter than the crack length, the scattered waves are efficiently excited and the attenuation of the primary waves can be observed on synthetic seismograms. On the other hand, when the incident wavelength is greater than the crack length, we can simulate the anisotropic behaviour of fractured media resulting from the scattering of seismic waves by the cracks through the time delay of the arrival of the transmitted wave. The method of calculation used is a boundary element method in which the Green's functions are computed by the discrete wavenumber method. For simplicity, the 2-D elastodynamic diffraction problem is considered. The rock matrix is supposed to be elastic, isotropic and homogeneous, while the cracks are all empty and have the same length and strike direction. An iterative method of calculation of the diffracted wavefield is developed in the case where a large number of cracks are present in order to reduce the computation time. The attenuation factor Q −1 of the direct waves passing through a fractured zone is measured in several frequency bands. We observe that the attenuation factor Q −1 of the direct P wave peaks around kd = 2, where k is the incident wavenumber and d the crack length, and decreases proportionally to ( kd ) −1 in the high-wavenumber range. In the long-wavelength domain, the velocity of the direct P wave measured for two different crack realizations is very close to the value predicted by Hudson's theory on the overall elastic properties of fractured materials.  相似文献   
5.
Dynamic stress variations due to shear faults in a plane-layered medium   总被引:11,自引:0,他引:11  
A complete set of expressions is presented for the computation of elastic dynamic stress in plane-layered media. We use a discrete-wavenumber reflectivity method to compute the stress field radiated by arbitrary moment-tensor sources. The expressions derived here represent an interesting tool for both-the observational and theoretical analysis of dynamic stress changes associated with earthquake phenomena. Dynamic stress changes associated with a strike-slip fault having unilateral rupture are shown. This modelling, which is similar to the 1992 Landers California earthquake, illustrates the effects of distance, directivity and depth on transient stress changes.  相似文献   
6.
7.
The presence of two regional seismic networks in southeastern France provides us high-quality data to investigate upper mantle flow by measuring the splitting of teleseismic shear waves induced by seismic anisotropy. The 10 three-component and broadband stations installed in Corsica, Provence, and western Alps efficiently complete the geographic coverage of anisotropy measurements performed in southern France using temporary experiments deployed on geodynamic targets such as the Pyrenees and the Massif Central. Teleseismic shear waves (mainly SKS and SKKS) are used to determine the splitting parameters: the fast polarization direction and the delay time. Delay times ranging between 1.0 and 1.5 s have been observed at most sites, but some larger delay times, above 2.0 s, have been observed at some stations, such as in northern Alps or Corsica, suggesting the presence of high strain zones in the upper mantle. The azimuths of the fast split shear waves define a simple and smooth pattern, trending homogeneously WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North in the Alps. This pattern is in continuity with the measurements performed in the southern Massif Central and could be related to a large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninic slab. We show that seismic anisotropy nicely maps the route of the slab from the initial rifting phase along the Gulf of Lion (30–22 Ma) to the drifting of the Corsica–Sardinia lithospheric block accompanied by the creation of new oceanic lithosphere in the Liguro–Provençal basin (22–17 Ma). In the external and internal Alps, the pattern of the azimuth of the fast split waves follows the bend of the alpine arc. We propose that the mantle flow beneath this area could be influenced or perhaps controlled by the Alpine deep penetrative structures and that the Alpine lithospheric roots may have deflected part of the horizontal asthenospheric flow around its southernmost tip.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号