首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   607篇
  免费   23篇
  国内免费   4篇
测绘学   11篇
大气科学   51篇
地球物理   131篇
地质学   219篇
海洋学   73篇
天文学   71篇
综合类   1篇
自然地理   77篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   13篇
  2019年   9篇
  2018年   20篇
  2017年   21篇
  2016年   27篇
  2015年   17篇
  2014年   22篇
  2013年   46篇
  2012年   26篇
  2011年   45篇
  2010年   35篇
  2009年   34篇
  2008年   37篇
  2007年   31篇
  2006年   16篇
  2005年   17篇
  2004年   26篇
  2003年   27篇
  2002年   19篇
  2001年   11篇
  2000年   7篇
  1999年   9篇
  1998年   7篇
  1997年   9篇
  1996年   7篇
  1995年   9篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1958年   1篇
排序方式: 共有634条查询结果,搜索用时 31 毫秒
1.
NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low‐energy wind, coronal hole high‐energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5–6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.  相似文献   
2.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
3.
A study was conducted to evaluate monitored natural attenuation (MNA) as a remedy for arsenic in groundwater at a former phosphate mining and manufacturing facility. The mineralogy, speciation, and lability of arsenic in phosphatic wastes present in soils were characterized using sequential extraction procedures, leaching experiments, batch adsorption tests, and microchemical speciation analysis. A PHREEQC-based reactive transport model was also parameterized using these laboratory results, and it was used to evaluate the importance of identified attenuation mechanisms on arsenic concentrations along a vertical flow path from a shallow, alluvial aquifer to the underlying Floridan aquifer. Arsenic was found to occur in several chemical forms in phosphatic wastes, including unstable sulfide minerals, adsorbed surface complexes, and relatively insoluble phosphate and oxide minerals. Most arsenic was associated with stable minerals. The reactive transport model predicted that historical leaching of solid-phase waste materials in soils would not have generated enough arsenic to explain the concentrations observed in downgradient groundwater; instead, the source of arsenic to groundwater was likely acidic and saline process water that infiltrated though unlined ponds and ditches during historical manufacturing operations. A key factor affecting the long-term effectiveness of natural attenuation of arsenic in groundwater is the occurrence and stability of iron oxyhydroxides in aquifer sediments. According to laboratory and reactive transport model results, sufficient levels were found to be present at the site to effectively limit arsenic migration at concentrations exceeding drinking water standards in the future in the Floridan aquifer. This study presents the geochemical evaluations that are needed to satisfy EPA guidelines on determining whether or not MNA is an acceptable remedy for a site. It specifically details the characterization and modeling that were used to demonstrate effectiveness at a site where MNA was ultimately selected as the remedy for arsenic in groundwater.  相似文献   
4.
Abstract

Equatorial rivers of East Africa exhibit unusually complex seasonal and inter-annual flow regimes, and aquatic and adjacent terrestrial organisms have adapted to cope with this flow variability. This study examined the annual flow regime over the past 40 years for three gauging stations on the Mara River in Kenya and Tanzania, which is of international importance because it is the only perennial river traversing the Mara-Serengeti ecoregion. Select environmental flow components were quantified and converted to ecologically relevant hydraulic variables. Vegetation, macroinvertebrates, and fish were collected and identified at target study sites during low and high flows. The results were compared with available knowledge of the life histories and flow sensitivities of the riverine communities to infer flow–ecology relationships. Management implications are discussed, including the need to preserve a dynamic environmental flow regime to protect ecosystems in the region. The results for the Mara may serve as a useful model for river basins of the wider equatorial East Africa region.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   
5.
We measured total selenium and total mercury concentrations ([TSe] and [THg]) in hair (n = 138) and blood (n = 73) of harbor seals (Phoca vitulina) from California to assess variation by geography and sex, and inferred feeding relationships based on carbon, nitrogen, and sulfur stable isotopes. Harbor seals from Hg-contaminated sites had significantly greater [THg], and lesser [TSe] and TSe:THg molar ratios than seals from a relatively uncontaminated site. Males had significantly greater [THg] than females at all locations. Sulfur stable isotope values explained approximately 25% of the variability in [THg], indicating increased Hg exposure for seals with a greater use of estuarine prey species. Decreased [TSe] in harbor seals from Hg-contaminated regions may indicate a relative Se deficiency to mitigate the toxic effects of Hg. Further investigation into the Se status and the potential negative impact of Hg on harbor seals from Hg-contaminated sites is warranted.  相似文献   
6.
The toxicity and metal bioavailability were studied in dredged sediments from Rodrigo de Freitas Lagoon (Rio de Janeiro, RJ, Brazil) using acute and avoidance tests with Eisenia andrei, and reproduction tests with Folsomia candida. The sediment was mixed with an artificial soil, and two natural soils (ferralsol and chernosol—representative Brazilian tropical soils) to obtain the following doses: 1, 3, 6, 12, 18, 24 and 30%. Total metal concentrations were determined in the sediment to support the interpretation of ecotoxicological data. Metal concentrations in the mixtures were in agreement with the threshold limits established by Brazilian law. However, significant avoidance responses were found on doses ≥?3% and were the most sensitive endpoint. Earthworm mortality found in artificial soil mixtures (LC50?=?3.9) suggests higher toxicity levels than those obtained in ferralsol (LC50?=?7.6%) and chernosol (11.0%) treatments. Earthworm mortality, avoidance responses and collembolan reproduction levels found in ferralsol mixtures (LC50?=?9.2; avoidance EC50?=?2.3%; reproduction EC50?=?2.8%) were higher compared to chernosol treatments (LC50?=?11.0%; avoidance EC50?=?4.3%; reproduction EC50?=?4.9%). The reduction of toxicity levels in chernosol mixtures is probably due to the abundance of expansive clay minerals in chernosols with capacity of adsorbing metals and other xenobiotic substances from soil pore water, decreasing metal bioavailability. Finally, threshold limits defined by Brazilian legislation for soil quality and land disposal of dredged sediments are not sufficient to prevent noxious effects on soil fauna and should be complemented with a preliminary ecotoxicological evaluation.  相似文献   
7.
Cadmium, chromium, nickel, and lead were evaluated in the particulate fraction at one of the most industrialized estuaries at the Southwestern Atlantic Ocean, through Geographic Information System (GIS). Concentrations were analyzed at 21 stations during 2008–2010. The highest metal concentrations (Cd: 8,9; Cr: 256,49; Ni: 27,02; Pb: 78,43 µg g??1 d. w.) were recorded at the stations located near industrial and urban discharges situated along the estuary. In addition, Pb presented a different seasonal and spatial behavior in comparison with Cd, Cr and Ni. Winter and spring presented the higher concentrations of Pb, and the inner stations presented the higher values. The estuary is considered a moderate to strongly polluted and significantly polluted according to the Index of geoaccumulation (Igeo) and the Enrichment Factor of Cd, respectively. The Multidimensional Scaling plot showed three groups of stations: the inner, associated to low levels of metals (G1), middle stations (G2) with intermediate levels and the outer (G3) with the highest ones. In addition, this work reveals the usefulness of the GIS-mapping techniques in the distribution of pollutants along an estuarine environment and the environmental quality assessment of estuarine systems.  相似文献   
8.
A simple relation between pore pressure change and one-dimensional surface deformation is presented. The relation is for pore pressure change in a confined aquifer that causes surface deformation. It can be applied to groundwater models of any discretization and is computationally efficient. The estimated surface deformation from model results can be compared to observed surface deformation through geodetic techniques such as Differential Interferometric Synthetic Aperture Radar. Model parameters then are constrained using the observed surface deformation. The validity of this relation is shown through constraint of model parameters for surface uplift due to pore pressure increase caused by wastewater disposal injection.  相似文献   
9.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   
10.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号