首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   3篇
  国内免费   2篇
测绘学   10篇
大气科学   25篇
地球物理   40篇
地质学   103篇
海洋学   6篇
天文学   18篇
自然地理   8篇
  2020年   4篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   7篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   14篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2005年   10篇
  2004年   8篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1983年   3篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1971年   2篇
  1968年   1篇
  1963年   1篇
  1959年   1篇
  1958年   3篇
  1957年   4篇
  1956年   3篇
  1955年   3篇
  1954年   2篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1949年   2篇
  1915年   1篇
排序方式: 共有210条查询结果,搜索用时 309 毫秒
1.
This study presents a review of published geological data, combined with original observations on the tectonics of the Simplon massif and the Lepontine gneiss dome in the Western Alps. New observations concern the geometry of the Oligocene Vanzone back fold, formed under amphibolite facies conditions, and of its root between Domodossola and Locarno, which is cut at an acute angle by the Miocene, epi- to anchizonal, dextral Centovalli strike-slip fault. The structures of the Simplon massif result from collision over 50 Ma between two plate boundaries with a different geometry: the underthrusted European plate and the Adriatic indenter. Detailed mapping and analysis of a complex structural interference pattern, combined with observations on the metamorphic grade of the superimposed structures and radiometric data, allow a kinematic model to be developed for this zone of oblique continental collision. The following main Alpine tectonic phases and structures may be distinguished:
1.  NW-directed nappe emplacement, starting in the Early Eocene (~50 Ma);
2.  W, SW and S-verging transverse folds;
3.  transpressional movements on the dextral Simplon ductile shear zone since ~32 Ma;
4.  formation of the Bergell – Vanzone backfolds and of the southern steep belt during the Oligocene, emplacement of the mantle derived 31–29 Ma Bergell and Biella granodiorites and porphyritic andesites as well as intrusions of 29–25 Ma crustal aplites and pegmatites;
5.  formation of the dextral discrete Rhone-Simplon line and the Centovalli line during the Miocene, accompanied by the pull-apart development of the Lepontine gneiss dome – Dent Blanche (Valpelline) depression.
It is suggested that movements of shortening in fan shaped NW, W and SW directions accompanied the more regular NW- to WNW-directed displacement of the Adriatic indenter during continental collision.
Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Editorial Handling: Stefan Bucher  相似文献   
2.
Authigenic metals (uranium, cadmium, and molybdenum), organic carbon (OC) and total C37 alkenone (totC37) concentrations were measured for the last 350 kyr in core MD900963, located in the eastern equatorial Arabian Sea. Authigenic metal concentrations on a carbonate-free basis range between 1 and 17 ppm, 0.5 and 6 ppm, and 0.5 and 4 ppm for U, Cd, and Mo, respectively. The profiles are characterized by well-defined 23 kyr cycles between oxic and mildly suboxic conditions. The redox-sensitive metal profiles also follow variations in the concentrations of OC (0.2-0.9%) and alkenones (0.2-6.7 ppm). The coupled variations in inorganic and organic constituents are attributed to a 23-kyr cycle in primary production above site MD900963, as suggested by clear correlations with independent micropaleontologic proxies (primary productivity indices based on foraminifera and coccoliths and fragmentation of foraminiferal shells). The 23-kyr cycles do appear to be primarily driven by productivity rather than changes in bottom water oxygen. Comparison with other records indicates that if this interpretation is correct, productivity variations across much of the Indian Ocean have been dominated by precessional forcing, with high productivity in phase with low summer insolation in the Northern Hemisphere. This interpretation contrasts with the traditional attribution of enhanced productivity in the Indian Ocean with periods of high summer insolation.  相似文献   
3.
We compare alkenone unsaturation ratios measured on recent sediments from the Indian Ocean (20°N–45°S) with modern sea oceanographic parameters. For each of the core sites we estimated average seasonal cycles of sea surface temperature (SST) and salinity, which we then weighted with the seasonal productivity cycle derived from chlorophyll satellite imagery. The unsaturation index (U37K′) ranges from 0.2 to 1 and correlates with water temperature but not with salinity. TheU37K′versus SST relationship for Indian Ocean sediments (U37K′= 0.033 SST + 0.05) is similar to what has been observed for core tops from the Pacific and Atlantic oceans and the Black Sea. A global compilation for core tops givesU37K′= 0.031 T + 0.084 (R= 0.98), which is close to a previously reported calibration based on particulate organic matter from the water column. For temperatures between 24° and 29°C, however, the slope seems to decrease to about 0.02U37K′unit/°C. For Indian Ocean core tops, the ratios of total C37alkenones/total C38alkenones and the slope of theU37K′-SST relationship are similar to those previously observed for cultures ofEmiliania huxleyibut different from those previously published forGephyrocapsa oceanica.EitherE. huxleyiis a major producer of alkenones in the Indian Ocean or strains ofG. oceanicaliving in the northern Indian Ocean behave differently from the one cultured. In contrast with coccolithophorid assemblages, the ratios of C37alkenones to total C38alkenones lack clear geographic pattern in the Indian Ocean.  相似文献   
4.
Geochemical data are presented for the meta-igneous, mafic-ultramafic complex near Finero. This complex is in contact with a phlogopite-bearing mantle peridotite and is subdivided into the Internal Gabbro unit, the Amphibole Peridotite unit, and the External Gabbro unit. The Internal Gabbro and the Amphibole Peridotite units consist of coarse-grained, chemically heterogeneous cumulates, whereas the External Gabbro unit is generally massive, chemically more uniform and approximately representative of the residual melt with MgO contents between 6.6 and 9.1% and Mg numbers between 38 and 58. Both whole-rock and mineral contents of Ni and Cr are significantly higher (at similar Mg numbers) in the Amphibole Peridotite unit than in the Internal Gabbro unit. The most straightforward interpretation of this is that the Amphibole Peridotite unit accumulated after the influx of fresh mafic (or ultramafic) magma into the magma chamber. Major-element chemical trends are continuous from the Amphibole Peridotite unit to the External Gabbro unit and are consistent with closed-system fractionation with no further addition of magma or contamination by wall or roof rock assimilation. In the External Gabbro unit, total FeO and TiO2 contents are strongly correlated with each other (and with P2O5 and Zr) and reach values as high as 19 and 4%, respectively, indicating an advanced degree of crystal fractionation along a tholeftic trend. The External Gabbro samples have generally smooth normalized trace element patterns, which are consistent with being representative of a liquid composition. The residual nature of the External Gabbro magma is also indicated by negative Eu and Sr anomalies, clear evidence for prior feldspar fractionation. REE patterns are otherwise indistinguishable from N-type MORB, but Th and U are significantly more depleted than in MORB. This Th and U depletion is similar to that found in olivine basalts and picrites on Iceland and Hawaii; its origin is not well understood. No evidence is seen for any assimilation of crystal material, in sharp contrast with the situation of the igneous complex in Val Sesia near Balmuccia, where the magma composition is dominated by assimilation of crust. We suggest that the heat provided by at most two injections of magma near Finero was insufficient to induce crystal anatexis, in contrast with the excess heat supplied by multiple magma injections at Balmuccia.  相似文献   
5.
6.
This study concentrates on the petrological and geochemical investigation of mafic rocks embedded within the voluminous Triassic June Complex of the central Sanandaj–Sirjan zone (Iran), which are crucial to reconstruct the geodynamics of the Neotethyan passive margin. The Triassic mafic rocks are alkaline to sub-alkaline basalts, containing 43.36–49.09 wt% SiO2, 5.19–20.61 wt% MgO and 0.66–4.59 wt% total alkalis. Based on MgO concentrations, the mafic rocks fall into two groups: cumulates (Mg# = 51.61–58.94) and isotropic basaltic liquids (Mg# = 24.54–42.66). In all samples, the chondrite-normalized REE patterns show enrichment of light REEs with variable (La/Yb)N ratios ranging from 2.48 to 9.00, which confirm their amalgamated OIB-like and E-MORB-like signatures. Enrichment in large-ion lithophile elements and depletion in high field strength elements (HFSE) relative to the primitive mantle further support this interpretation. No samples point to crustal contamination, all having undergone fractionation of olivine + clinopyroxene + plagioclase. Nevertheless, elemental data suggest that the substantial variations in (La/Sm)PM and Zr/Nb ratios can be explained by variable degrees of partial melting rather than fractional crystallization from a common parental magma. The high (Nb/Yb)PM ratio in the alkaline mafic rocks points to the mixing of magmas from enriched and depleted mantle sources. Abundant OIB alkaline basalts and rare E-MORB appear to be linked to the drifting stage on the northern passive margin of the Neotethys Ocean.  相似文献   
7.
Late Palaeogene syn-tectonic volcanic products have been found in the Northern Alpine foreland basin and in the South Alpine hemipelagic basin. The source of abundant volcanic fragments is still in debate. We analyzed the geochronology and geochemistry of detrital zircons, and evaluated their temporal and genetic relationships with potential volcanic sources. The study shows that the detrital zircon U–Pb age patterns have two major age groups: a dominance (ca. 90%) of pre-Alpine zircons was found, as commonly observed in other Alpine flysch formations. These zircons apparently derived from erosion of the early Alpine nappe stack in South Alpine and Austroalpine units. Furthermore, a few Neo-Alpine zircons (ca. 10%) have ages ranging from Late Eocene to Early Oligocene (~ 41–29 Ma). Both source materials were mixed during long riverine transport to the basin margins before being re-deposited by gravity flows. These Palaeogene ages match with the activity of Peri-Adriatic magmatism, including the Biella volcanic suite as well as the Northern Adamello and Bergell intrusions. The values of REE and 176Hf/177Hf(t) ratios of the Alpine detrital zircons are in line with the magmatic signatures. We observe an in time and space variable supply of syn-sedimentary zircons. From late Middle Eocene to Late Eocene, basin influx into the South Alpine and Glarus (A) basins from the Northern Adamello source is documented. At about 34 Ma, a complete reorganisation is recorded by (1) input of Bergell sources into the later Glarus (B) basin, and (2) the coeval volcaniclastic supply of the Haute-Savoie basin from the Biella magmatic system. The Adamello source vanished in the foreland basin. The marked modification of the basin sources at ~ 34 Ma is interpreted to be initiated by a northwestern shift of the early Alpine drainage divide into the position of the modern Insubric Line.  相似文献   
8.
The lower Oligocene evaporite sequence of the Mulhouse Basin (France) contains organic matter-rich marl deposits. These marls display an overall cyclic variation of sedimentation rate, organic carbon content, hydrogen index and selected molecular parameters over a 30 m thick stratigraphic interval. The integration of all sedimentological and geochemical parameters has allowed the reconstruction and characterization of the paleoenvironment of deposition. The marls were deposited in a perennial lake that was at times connected to the sea. Two organic facies end members could be assigned to a lake stage with a marine connection and a lake stage that received dominantly continental water input. The overall stratigraphic variation in the organic matter content is interpreted to reflect the adaptation of the Oligocene flora to the changing paleoclimate and environmental conditions.  相似文献   
9.
A suite of marl samples from the evaporitic series of the Mulhouse basin (France; Lower Oligocene) was studied for its biomarker content, in particular its polar constituents. Novel series of 3-carboxyalkyl steranes and 15-oxo triaromatic ketones were identified by synthesis. The 3-carboxyalkyl steranes probably originate from highly polar precursors yet unreported in living organisms. Our data suggest that micro-algae could be the major source of these compounds which seem to be indicators of high algal input rather than characteristic of evaporitic environments. The 15-oxo triaromatic ketones could be oxidation products of triaromatic steroid hydrocarbons formed during diagenesis, although their formation during work-up procedure could not be excluded.  相似文献   
10.
The present discussion about magmatic processes develops out of granite tectonics which goes back toHans Cloos (1922). Kinematics and dynamics of the flow within an uprising magma result from archimedean buoyancy. This force equilibrates all disequilibria of the terrestrial density distribution caused by thermal actions. Magmatic uprising, however, is not a strictly archimedean process, but suffers from distortion, deformation, deviation, and self-rotations caused by secondary forces which originate from the rotation of the earth. Simultaneous step wise crystallization of the magma leads to gravitational differentiation which is accompanied by lateral differentiation. Thus, in the end the magma solidifies asymmetrically, fractionated, and exhibiting an azimuthal tendency. These features may be expressed either by an individual magmatic body, or by a whole petrographic province. Apparently, no magma is able to rise homogeneously and vertically upwards. The entire process of magmatic uprising as well as the resulting inner fabric and outer shape appear to be controlled by the laws of Archimedes, Coriolis, and Cloos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号