首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26248篇
  免费   642篇
  国内免费   1410篇
测绘学   1624篇
大气科学   2256篇
地球物理   5038篇
地质学   12719篇
海洋学   1217篇
天文学   1673篇
综合类   2365篇
自然地理   1408篇
  2024年   4篇
  2023年   49篇
  2022年   112篇
  2021年   131篇
  2020年   137篇
  2019年   130篇
  2018年   4877篇
  2017年   4147篇
  2016年   2681篇
  2015年   373篇
  2014年   220篇
  2013年   162篇
  2012年   1111篇
  2011年   2829篇
  2010年   2153篇
  2009年   2434篇
  2008年   2004篇
  2007年   2472篇
  2006年   143篇
  2005年   265篇
  2004年   478篇
  2003年   467篇
  2002年   330篇
  2001年   118篇
  2000年   109篇
  1999年   73篇
  1998年   63篇
  1997年   26篇
  1996年   17篇
  1995年   19篇
  1994年   23篇
  1993年   12篇
  1992年   18篇
  1991年   15篇
  1990年   10篇
  1989年   6篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   25篇
  1980年   20篇
  1979年   1篇
  1976年   6篇
  1958年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Fang  Xiuqi  Zheng  Xue  Zhang  Xing 《地理学报(英文版)》2020,30(1):103-118
ENSO is an interannual mode which may be affected by external forcing, such as volcanic eruptions. Based on the reconstructed volcanic eruptions chronology and ENSO sequences, both 195 large volcanic eruptions(VEI≥4) and 398 ENSO(El Ni?o and La Ni?a) events were extracted from 1525 to 2000. An analysis of the correspondence between the large volcanic eruptions and ENSO events was performed by matching the large volcanic eruptions with the types and magnitudes of ENSO events present in the 0–2 years after the eruptions. The results show the following:(1) The percentages of ENSO events within the 3 years after the large eruptions had increased to 68.3% from 31.7% compared with those with no-eruptions in the previous 0–2 years. In addition, the ratio of El Ni?o to La Ni?a events turned from 2:3 to 1:1, and more El Ni?o events occurred in the 0 year after eruptions in the low-latitudes of the Northern Hemisphere and in the tropics but more La Ni?a events occurred in the 0 year after in the high-latitudes of the Northern Hemisphere and the Southern Hemisphere.(2) After the eruptions, the weak(W) El Ni?o events had increased by 8 percentage points and the very strong(VS) El Ni?o events had decreased by 10 percentage points; conversely, there was a decrease by 15 percentage points of the weak La Ni?a events and an increase by 11.4 percentage points of the very strong La Ni?a events. Specifically, the percentages of strong La Ni?a events increased to a peak at 1(+1) year after the eruptions.(3) The percentage of eruptions followed by single-year ENSO was the greatest. The percentage of ENSO events that occurred in the consecutive 2 years following an eruption was approximately equal to the percentage of events that occurred consecutively 3 years following an eruption, and both sets of ENSO magnitudes showed a decreasing trend.  相似文献   
2.
西藏林周县是我国大骨节病(KBD)患病较为严重的地区之一,本文将林周县作为研究区,通过使用地理探测器(GeoDetector)量化分析KBD患病率风险因子的影响,并使用环境化学方法验证空间分析结果。通过对10个潜在影响因子的分析以及对当地KBD患病村和非患病村的土壤-水-粮食-人这一生物地球化学循环的环境化学分析,结果表明:(1)林周县KBD由一组多重且交互作用的环境影响因子共同作用影响,其中最重要的控制因子是地层因子;(2)所有环境介质(土壤、水、谷物)及人体组织中的硒元素浓度在KBD患病区均低于非患病区;(3)当地居民对硒和铬的摄入严重不足,尤其是KBD患病村中居民硒元素平均日摄入量(ADD)大约仅为世界卫生组织(WHO)建议的成人基本摄入量下限的4%;(4)我们推测,当地居民患病主要是由于地层这一影响因子,这是由于通过生态系统的迁移转化导致当地人口严重硒缺乏,最终导致地方性生物地球化学硒缺乏。  相似文献   
3.
The effects of irregularity in elevation of cross-laminated timber buildings have not been fully analysed in literature to provide useful information for the design. In this work, a number of building configurations, regular or irregular in elevation, characterized by a different arrangement per storey of the floor–wall joints have been analysed by means of non-linear dynamic analyses. Comparative results in terms of ratio between the behaviour q-factor of the investigated irregular configurations and that of reference regular ones, show that less dissipative capacity can be expected if the building is irregular due to a disequilibrium among storeys between the actual and the required strength provided by the floor–wall joints. A correlation method to estimate the behaviour q-factor for perfectly regular cross-laminated timber buildings is here presented and extended to in-elevation irregular ones. A new empirical formulation to assess the reliable corrective factor accounting for the irregularity in elevation of cross-laminated timber buildings, according to Eurocode 8 provisions, is also proposed. A final discussion about the implications of in-elevation irregularity on the building design is reported.  相似文献   
4.
Self-centering rocking walls offer the possibility of minimizing repair costs and downtimes, and also nullify the residual drift after seismic events, thanks to their self-centering properties. In this paper, the effect of axial stress ratio on the behavior of monolithic self-centering rocking walls is investigated by utilizing a developed finite element model. To verify the validity of the finite element model, results and observed damage in the model are compared with those of a full-scale wall test. The axial stress ratio is varied from 0.024 to 0.30 while keeping the other structural parameters constant. For qualitative damage evaluation, the observed damage in the model compared with expected damage states of desired performance levels. In order to evaluate the incurred damage quantitatively, the amount of crushing and damage in the wall is calculated by utilizing several ratios (crushing ratio and damage ratio). Furthermore, seismic response factors (i.e., μ, R and Cd) are calculated for different axial stress ratio values. The obtained results showed that, in order to satisfy the requirements of desired performance levels, the maximum axial stress ratio should be approximately within the range of 0.10–0.15. In addition, the maximum overall damage ratio and crushing ratio are suggested to be less than 5%. For axial stress ratio higher than 0.15, the flag-shaped pattern of hysteresis curves completely disappeared and the variation of displacement ductility is less sensitive to axial stress ratio. Considering the maximum axial stress ratio limited to 0.150, values of 4 and 3.5 are conservatively proposed as a period-independent response modification factor and displacement modification factor of the investigated structural wall, respectively.  相似文献   
5.
6.
The accurate evaluation and appropriate treatment of uncertainties is of primary importance in modern probabilistic seismic hazard assessment (PSHA). One of the objectives of the SIGMA project was to establish a framework to improve knowledge and data on two target regions characterized by low-to-moderate seismic activity. In this paper, for South-Eastern France, we present the final PSHA performed within the SIGMA project. A new earthquake catalogue for France covering instrumental and historical periods was used for the calculation of the magnitude-frequency distributions. The hazard model incorporates area sources, smoothed seismicity and a 3D faults model. A set of recently developed ground motion prediction equations (GMPEs) from global and regional data, evaluated as adequately representing the ground motion characteristics in the region, was used to calculate the hazard. The magnitude-frequency distributions, maximum magnitude, faults slip rate and style-of-faulting are considered as additional source of epistemic uncertainties. The hazard results for generic rock condition (Vs30 = 800 m/s) are displayed for 20 sites in terms of uniform hazard spectra at two return periods (475 years and 10,000 years). The contributions of the epistemic uncertainties in the ground motion characterizations and in the seismic source characterization to the total hazard uncertainties are analyzed. Finally, we compare the results with existing models developed at national scale in the framework of the first generation of models supporting the Eurocode 8 enforcement, (MEDD 2002 and AFPS06) and at the European scale (within the SHARE project), highlighting significant discrepancies at short return periods.  相似文献   
7.
The awareness and preservation of the vernacular heritage and traditional construction techniques and materials is crucial as a key element of cultural identity. However, vernacular architecture located in earthquake prone areas can show a particularly poor seismic performance because of inadequate construction practices resulting from economic restraints and lack of resources. The horizontal diaphragms are one of the key aspects influencing the seismic behavior of buildings because of their major role transmitting the seismic actions to the vertical resisting elements of the structure. This paper presents a numerical parametric study adopted to understand the seismic behavior and resisting mechanisms of vernacular buildings according to the type of horizontal diaphragm considered. Detailed finite element modeling and nonlinear static (pushover) analyses were used to perform the thorough parametric study aimed at the evaluation and quantification of the influence of the type of diaphragm in the seismic behavior of vernacular buildings. The reference models used for this study simulate representative rammed earth and stone masonry vernacular buildings commonly found in the South of Portugal. Therefore, this paper also contributes for a better insight of the structural behavior of vernacular earthen and stone masonry typologies under seismic loading.  相似文献   
8.
In this study, the efficiency of conventional shotcrete technique for strengthening of Un-Reinforced Masonry (URM) walls was shown using an experimental program. In addition, in this program the possible benefit of using anchors for connecting the shotcrete reinforcement layer to the R/C foundation was studied. The experimental program consisted of testing five full scale specimens with two different height-to-length aspect ratios and so different failure modes, under in-plane cyclic loading conditions. Two specimens were tested as reference and others were strengthened on a single-face using shotcrete layer. According to the results, strengthening of URM walls using traditional shotcrete approach created a completely stiff panel and prevented the formation of cracks. The failure mode in both reference and strengthened short length walls was rocking and the shotcrete layer could increase the strength capacity, energy dissipation, and stiffness of wall due to yielding and rupture of steel bars anchored to the foundation. On the other hand, in strengthened long length walls, shotcrete layer increased the shear sliding capacity with no or small increasing in their rocking capacity. Therefore, the failure mode of strengthened walls converted from shear sliding to rocking, even in the specimen with anchorage system. The distributed type of anchorage system could not improve the strength capacity of long length wall. Anchorage system was able to improve the out-of-plane performance of strengthened walls.  相似文献   
9.
The development of fragility curves to perform seismic scenario-based risk assessment requires a fully probabilistic procedure in order to account for uncertainties at each step of the computation. This is especially true when developing fragility curves conditional on an Intensity Measure that is directly available from a ground-motion prediction equation. In this study, we propose a new derivation method that uses realistic spectra instead of design spectral shapes or uniform hazard spectra and allows one to easily account for the features of the site-specific hazard that influences the fragility, without using non-linear dynamic analysis. The proposed method has been applied to typical school building types in the city of Basel (Switzerland) and the results have been compared to the standard practice in Europe. The results confirm that fragility curves are scenario dependent and are particularly sensitive to the magnitude of the earthquake scenario. The same background theory used for the derivation of the fragility curves has allowed an innovative method to be proposed for the conversion of fragility curves to a common IM (i.e. spectral acceleration or PGA). This conversion is the only way direct comparisons of fragility curves can be made and is useful when inter-period correlation cannot be used in scenario loss assessment. Moreover, such conversion is necessary to compare and verify newly developed curves against those from previous studies. Conversion to macroseismic intensity is also relevant for the comparison between mechanical-based and empirical fragility curves, in order to detect possible biases.  相似文献   
10.
Fragility functions are derived for low-rise code compliant & non-compliant special moment resisting frames (SMRFs). Non-compliant SMRFs those built in low strength concrete and lacking confining ties in joint panel zones, commonly found in developing countries. Shake table tests were performed on single-storey and two-storey 1:3 reduced scale representative frames to understand the damage mechanism and develop deformation-based damage scale. The non-compliant SMRF experienced column flexure cracking, longitudinal bar-slip in beam and observed with cover concrete spalling from the joint panels. The code compliant SMRF experienced flexure cracks in beam/column, and experienced joint cracking under extreme shaking. Numerical modeling technique is developed for inelastic modeling of reinforced concrete frame with beam bar-slip and joint damageability using SeismoStruct. Natural accelerograms were used to analyze the considered frames through incremental dynamic analyses in SeismoStruct. A probabilistic based approach was used to derive fragility functions for the considered frames. An example case study is presented for damageability evaluation of structures for earthquakes of various return periods (43, 72, 475, 2475 years).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号