首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9125篇
  免费   360篇
  国内免费   82篇
测绘学   223篇
大气科学   621篇
地球物理   2140篇
地质学   3169篇
海洋学   844篇
天文学   1378篇
综合类   21篇
自然地理   1171篇
  2021年   92篇
  2020年   120篇
  2019年   123篇
  2018年   186篇
  2017年   177篇
  2016年   235篇
  2015年   216篇
  2014年   218篇
  2013年   522篇
  2012年   269篇
  2011年   340篇
  2010年   311篇
  2009年   381篇
  2008年   366篇
  2007年   329篇
  2006年   355篇
  2005年   269篇
  2004年   337篇
  2003年   297篇
  2002年   290篇
  2001年   196篇
  2000年   183篇
  1999年   140篇
  1998年   134篇
  1997年   118篇
  1996年   125篇
  1995年   129篇
  1994年   135篇
  1993年   131篇
  1992年   128篇
  1991年   130篇
  1990年   118篇
  1989年   98篇
  1988年   92篇
  1987年   125篇
  1986年   112篇
  1985年   177篇
  1984年   206篇
  1983年   156篇
  1982年   142篇
  1981年   143篇
  1980年   123篇
  1979年   134篇
  1978年   131篇
  1977年   121篇
  1976年   106篇
  1975年   104篇
  1974年   77篇
  1973年   95篇
  1972年   57篇
排序方式: 共有9567条查询结果,搜索用时 15 毫秒
1.
Knowledge about the stochastic nature of heterogeneity in subsurface hydraulic properties is critical for aquifer characterization and the corresponding prediction of groundwater flow and contaminant transport. Whereas the vertical correlation structure of the heterogeneity is often well constrained by borehole information, the lateral correlation structure is generally unknown because the spacing between boreholes is too large to allow for its meaningful inference. There is, however, evidence to suggest that information on the lateral correlation structure may be extracted from the correlation statistics of the subsurface reflectivity structure imaged by surface-based ground-penetrating radar measurements. To date, case studies involving this approach have been limited to 2D profiles acquired at a single antenna centre frequency in areas with limited complementary information. As a result, the practical reliability of this methodology has been difficult to assess. Here, we extend previous work to 3D and consider reflection ground-penetrating radar data acquired using two antenna centre frequencies at the extensively explored and well-constrained Boise Hydrogeophysical Research Site. We find that the results obtained using the two ground-penetrating radar frequencies are consistent with each other, as well as with information from a number of other studies at the Boise Hydrogeophysical Research Site. In addition, contrary to previous 2D work, our results indicate that the surface-based reflection ground-penetrating radar data are not only sensitive to the aspect ratio of the underlying heterogeneity, but also, albeit to a lesser extent, to the so-called Hurst number, which is a key parameter characterizing the local variability of the fine-scale structure.  相似文献   
2.
Natural Resources Research - Identification of geochemical anomalies is of particular importance for tracing the footprints of anomalies. This can be implemented by advanced techniques of...  相似文献   
3.
Natural Resources Research - In the past few decades, a variety of data-driven predictive modeling techniques has led to a dramatic advancement in mineral prospectivity mapping (MPM). The random...  相似文献   
4.

This paper applied a logistic-based fuzzy logic inference system to integrate critical factors that could control orogenic gold mineralization in part of the Kushaka schist belt, north-central Nigeria to develop a process-based mineral potential mapping (MPM) of the area. The critical factors from geophysical and geological dataset were weighted using logistic functions. The fuzzy logic inference system provides the capability to handle complex geological processes that culminated in orogenic gold mineralization as well as minimizing systemic uncertainties/fuzziness that often plague MPM. The results of this work show that granitic intrusions with fuzzy scores of 0.67–0.90 played a major role in generating high geothermal gradient in the area. Seventy percent of the existing gold mine sites in the area spatially coincide with metasedimentary rocks, having fuzzy scores of 0.7–0.9; this suggests metasedimentary rocks as being responsible for the production of gold fluid and ligands in the area. The evidence of hydrothermal activity, with fuzzy scores of 0.53 and 0.91, confirms the occurrence of mineralization associated with quartz veins and granite rocks. Lithological contacts and faults, having fuzzy scores of 0.60–0.80, presumably contribute to the localization of orogenic gold mineralization in the area. Emerging from the results, favorable zones for primary orogenic gold mineralization in the area occurred predominantly on granite gneiss and quartz veins. The mineral potential map was found consistent with the local geology, structural styles and hydrothermal alteration signatures in the area, and its validation using the existing locations of geochemical anomalies and prediction–area rate curve in the study area showed 75 and 72% agreement, respectively, thus confirming the reliability of the developed mineral potential map for resource management.

  相似文献   
5.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   
6.
Natural Resources Research - This study tested and compared the mineral potential mapping capabilities of the random forest (RF) and maximum entropy (MaxEnt) algorithms using gold deposit...  相似文献   
7.
The characterization of pore-space connectivity in porous media at the sediment/water interface is critical in understanding contaminant transport and reactive biogeochemical processes in zones of groundwater and surface-water exchange. Previous in situ studies of dual-domain (i.e., mobile/less-mobile porosity) systems have been limited to solute tracer injections at scales of meters to hundreds of meters and subsequent numerical model parameterization using fluid concentration histories. Pairing fine-scale (e.g., sub-meter) geoelectrical measurements with fluid tracer data over time alleviates dependence on flowpath-scale experiments, enabling spatially targeted characterization of shallow sediment/water interface media where biogeochemical reactivity is often high. The Dual-Domain Porosity Apparatus is a field-tested device capable of variable rate-controlled downward flow experiments. The Dual-Domain Porosity Apparatus facilitates inference of dual-domain parameters, i.e., mobile/less-mobile exchange rate coefficient and the ratio of less mobile to mobile porosity. The Dual-Domain Porosity Apparatus experimental procedure uses water electrical conductivity as a conservative tracer of differential loading and flushing of pore spaces within the region of measurement. Variable injection rates permit the direct quantification of the flow-dependence of dual-domain parameters, which has been theorized for decades but remains challenging to assess using existing experimental methodologies.  相似文献   
8.
Determining sediment transfer times is key to understanding source-to-sink dynamics and the transmission of environmental signals through the fluvial system. Previous work on the Bolivian Altiplano applied the in situ cosmogenic 14C-10Be-chronometer to river sands and proposed sediment storage times of ~10–20 kyr in four catchments southeast of Lake Titicaca. However, the fidelity of those results hinges upon isotopic steady-state within sediment supplied from the source area. With the aim of independently quantifying sediment storage times and testing the 14C-10Be steady-state assumption, we dated sediment storage units within one of the previously investigated catchments using radiocarbon dating, cosmogenic 10Be-26Al isochron burial dating, and 10Be-26Al depth-profile dating. Palaeosurfaces appear to preserve remnants of a former fluvial system, which has undergone drainage reversal, reduction in catchment area, and local isostatic uplift since ~2.8 Ma. From alluvium mantling the palaeosurfaces we gained a deposition age of ~580 ka, while lower down fluvial terraces yielded ≤34 ka, and floodplains ~3–1 ka. Owing to restricted channel connectivity with the terraces and palaeosurfaces, the main source of channel sediment is via reworking of the late Holocene floodplain. Yet modelling a set of feasible scenarios reveals that floodplain storage and burial depth are incompatible with the 14C-10Be disequilibrium measured in the channel. Instead we propose that the 14C-10Be offset results from: (i) non-uniform erosion whereby deep gullies supply hillslope-derived debris; and/or (ii) holocene landscape transience associated with climate or human impact. The reliability of the 14C-10Be chronometer vitally depends upon careful evaluation of sources of isotopic disequilibrium in a wide range of depositional and erosional landforms in the landscape. © 2018 John Wiley & Sons, Ltd.  相似文献   
9.
Meandering river sinuosity increases until the channel erodes into itself (neck cutoff) or forms a new channel over the floodplain (chute cutoff) and sinuosity is reduced. Unlike neck cutoff, which can be measured or modelled without considering overbank processes, chute cutoff must be at least partially controlled by channel-forming processes on the floodplain. Even though chute cutoff controls meandering river form, the processes that cause chute cutoff are not well understood. This study analyses the morphology of two incipient chute cutoffs along the East Fork White River, Indiana, USA, using high temporal and spatial resolution UAS-based LiDAR and aerial photography. LiDAR and aerial imagery obtained between 1998 and 2019 reveals that large scour holes formed in the centre of both chutes sometime after chute channel initiation. A larger analysis within the study watershed reveals that scour holes within incipient chutes can be stable or unstable, and tend to stabilize when the chute is colonized by native vegetation and forest. When the scour holes form in farmed floodplain, they enlarge rapidly after initial formation and contribute to complete chute cutoff. In addition, this study shows that the formation of scour holes can occur in response to common, relatively low-magnitude floods and that the amount of incipient chute erosion does not depend on peak flood magnitude. The role of scour holes in enlarging chute channels could be an important mechanism for chute channel evolution in meandering rivers. This study also confirms that understanding the relationships among flow, land cover, and cutoff morphology is substantially improved with on-demand remote sensing techniques like integrated UAS and LiDAR. © 2020 John Wiley & Sons, Ltd.  相似文献   
10.
The adequate documentation and interpretation of regional‐scale stratigraphic surfaces is paramount to establish correlations between continental and shallow marine strata. However, this is often challenged by the amalgamated nature of low‐accommodation settings and control of backwater hydraulics on fluvio‐deltaic stratigraphy. Exhumed examples of full‐transect depositional profiles across river‐to‐delta systems are key to improve our understanding about interacting controlling factors and resultant stratigraphy. This study utilizes the ~400 km transect of the Cenomanian Mesa Rica Sandstone (Dakota Group, USA), which allows mapping of down‐dip changes in facies, thickness distribution, fluvial architecture and spatial extent of stratigraphic surfaces. The two sandstone units of the Mesa Rica Sandstone represent contemporaneous fluvio‐deltaic deposition in the Tucumcari sub‐basin (Western Interior Basin) during two regressive phases. Multivalley deposits pass down‐dip into single‐story channel sandstones and eventually into contemporaneous distributary channels and delta‐front strata. Down‐dip changes reflect accommodation decrease towards the paleoshoreline at the Tucumcari basin rim, and subsequent expansion into the basin. Additionally, multi‐storey channel deposits bound by erosional composite scours incise into underlying deltaic deposits. These represent incised‐valley fill deposits, based on their regional occurrence, estimated channel tops below the surrounding topographic surface and coeval downstepping delta‐front geometries. This opposes criteria offered to differentiate incised valleys from flood‐induced backwater scours. As the incised valleys evidence relative sea‐level fall and flood‐induced backwater scours do not, the interpretation of incised valleys impacts sequence stratigraphic interpretations. The erosional composite surface below fluvial strata in the continental realm represents a sequence boundary/regional composite scour (RCS). The RCS’ diachronous nature demonstrates that its down‐dip equivalent disperses into several surfaces in the marine part of the depositional system, which challenges the idea of a single, correlatable surface. Formation of a regional composite scour in the fluvial realm throughout a relative sea‐level cycle highlights that erosion and deposition occur virtually contemporaneously at any point along the depositional profile. This contradicts stratigraphic models that interpret low‐accommodation settings to dominantly promote bypass, especially during forced regressions. Source‐to‐sink analyses should account for this in order to adequately resolve timing and volume of sediment storage in the system throughout a complete relative sea‐level cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号