首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
大气科学   3篇
地球物理   14篇
地质学   13篇
海洋学   2篇
天文学   14篇
自然地理   7篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2001年   4篇
  1999年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1982年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
We report on the investigation of presolar grain inventories of hydrated lithic clasts in three metal-rich carbonaceous chondrites from the CR clan, Acfer 182 (CH3), Isheyevo (CH3/CBb3), and Lewis Cliff (LEW) 85332 (C3-un), as well as the carbon- and nitrogen-isotopic compositions of the fine-grained clast material. Eleven presolar silicate grains as well as nine presolar silicon carbide (SiC) grains were identified in the clasts. Presolar silicate abundances range from 4 to 22 parts per million (ppm), significantly lower than in pristine meteorites and interplanetary dust particles (IDP), and comparable to recent findings for CM2s and CR2 interchondrule matrix. SiC concentrations lie between 9 and 23 ppm, and are comparable to the values for CI, CM, and CR chondrites. The results of our investigation suggest similar alteration pathways for the clast material, the interchondrule matrix of the CR2 chondrites, and the fine-grained fraction of CM2 chondrites. Fine-grained matter of all three meteorites contains moderate to high 15N-enrichments (~50‰ ≤ δ15N ≤ ~1600‰) compared to the terrestrial value, indicating the presence of primitive organic material. We observed no correlation between 15N-enrichments and presolar dust concentrations in the clasts. This is in contrast to the findings from a suite of primitive IDPs, which display in several cases enhanced bulk 15N/14N ratios and high presolar grain abundances of several hundred or even thousand ppm. The bulk 15N/14N ratios of the clasts are comparable to the range for primitive IDPs, suggesting a nitrogen carrier less susceptible to destruction by aqueous alteration than silicate stardust.  相似文献   
2.
Stable sulfur isotope fractionation during microbial sulfate reduction is a potential tool to estimate sulfate reduction rates at field sites. However, little is known about the influence of the utilized carbon source on the magnitude of sulfur isotope fractionation. To investigate this effect, both a pure culture (strain PRTOL1) and enrichment cultures from a petroleum hydrocarbon (PHC)-contaminated aquifer were used and grown in batch cultures on various carbon sources with an initial sulfate concentration of 1 mmol/L. As sole carbon sources the PHC components naphthalene, 1,3,5-trimethylbenzene, and heating oil (enrichment culture) and the organic acids acetate, pyruvate, benzoate, and 3-phenylpropionate (enrichment culture and PRTOL1) were used. Sulfate reduction rates of all cultures ranged from 6 ± 1 nmol cm−3 d−1 (enrichment culture grown on 1,3,5-trimethylbenzene) to 280 ± 6 nmol cm−3 d−1 (enrichment culture grown on pyruvate). Cell-specific sulfate reduction rates ranged from 1.1 × 10−14 mol cell−1 d−1 (PRTOL1 grown on pyruvate) to 1.5 × 10−13 mol cell−1 d−1 (PRTOL1 grown on acetate). Sulfur isotope enrichment factors (ε) for the enrichment culture ranged from 16.1‰ (3-phenylpropionate) to 34.5‰ (1,3,5-trimethylbenzene) and for PRTOL1 from 30.0‰ (benzoate) to 36.0‰ (pyruvate). Cultures of PRTOL1 always showed higher ε values than the enrichment culture when grown on the same carbon source due to culture-specific properties. Higher ε values were obtained when the enrichment culture was grown on PHC components than on organic acids. No relationship between ε values and cell-specific sulfate reduction rate existed when all data were combined. When comparing the magnitude of ε values determined in this laboratory study with ε values measured at contaminated and uncontaminated field sites, it becomes evident that a multitude of factors influences ε values at field sites and complicates their interpretation. The results of this study help us assess some of the general parameters that govern the magnitude of ε in sulfate-reducing environments.  相似文献   
3.
We present a model of bacterial sulfate reduction that includes equations describing the fractionation relationship between the sulfur and the oxygen isotope composition of residual sulfate (δ34SSO4_residual, δ18OSO4_residual) and the amount of residual sulfate. The model is based exclusively on oxygen isotope exchange between cell-internal sulfur compounds and ambient water as the dominating mechanism controlling oxygen isotope fractionation processes. We show that our model explains δ34SSO4_residual vs. δ18OSO4_residual patterns observed from natural environments and from laboratory experiments, whereas other models, favoring kinetic isotope fractionation processes as dominant process, fail to explain many (but not all) observed δ34SSO4_residual vs. δ18OSO4_residual patterns. Moreover, we show that a “typical” δ34SSO4_residual vs. δ18OSO4_residual slope does not exist. We postulate that measurements of δ34SSO4_residual and δ18OSO4_residual can be used as a tool to determine cell-specific sulfate reduction rates, oxygen isotope exchange rates, and equilibrium oxygen isotope exchange factors. Data from culture experiments are used to determine the range of sulfur isotope fractionation factors in which a simplified set of equations can be used. Numerical examples demonstrate the application of the equations. We postulate that, during denitrification, the oxygen isotope effects in residual nitrate are also the result of oxygen isotope exchange with ambient water. Consequently, the equations for the relationship between δ34SSO4_residual, δ18OSO4_residual, and the amount of residual sulfate could be modified and used to calculate the fractionation-relationship between δ15NNO3_residual, δ18ONO3_residual, and the amount of residual nitrate during denitrification.  相似文献   
4.
The exact number, extent and chronology of the Middle Pleistocene Elsterian and Saalian glaciations in northern Central Europe are still controversial. This study presents new luminescence data from Middle Pleistocene ice‐marginal deposits in northern Germany, giving evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). The study area is located in the Leine valley south of the North German Lowlands. The data set includes digital elevation models, high‐resolution shear wave seismic profiles, outcrop and borehole data integrated into a 3D subsurface model to reconstruct the bedrock relief surface. For numerical age determination, we performed luminescence dating on 12 ice‐marginal and two fluvial samples. Luminescence ages of ice‐marginal deposits point to at least two ice advances during MIS 12 and MIS 10 with ages ranging from 461±34 to 421±25 ka and from 376±27 to 337±21 ka. The bedrock relief model and different generations of striations indicate that the older ice advance came from the north and the younger one from the northeast. During rapid ice‐margin retreat, subglacial overdeepenings were filled with glaciolacustrine deposits, partly rich in re‐worked Tertiary lignite and amber. During MIS 8 and MIS 6, the study area may have been affected by two ice advances. Luminescence ages of glaciolacustrine delta deposits point to a deposition during MIS 8 or early MIS 6, and late MIS 6 (250±20 to 161±10 ka). The maximum extent of both the Elsterian (MIS 12 and MIS 10) and Saalian glaciations (MIS 8? and MIS 6) approximately reached the same position in the Leine valley and was probably controlled by the formation of deep proglacial lakes in front of the ice sheets, preventing a further southward advance.  相似文献   
5.
During the Middle Pleistocene late Saalian glaciation of northern central Europe numerous pro‐glacial lakes formed along the southwestern margin of the Scandinavian Ice Sheet. Little is known about the drainage history of these lakes, the pathways of glacial lake outburst floods and their impacts on erosion, sedimentation and landscape evolution. This study investigated the impact of the late Saalian Weser and Münsterland Lake (Germany) outburst floods. In particular, we reconstructed the routing and flow dynamics of the lake outburst flood and analysed the flood related sediments. We employed one‐dimensional hydraulic modelling to calculate glacial lake outburst flood hydrographs. We modelled the flow pathway and local flow conditions along the pathway based on the boundary conditions of two different hydrographs and two different ice‐margin positions. The modelling results were compared with geomorphological and sedimentological field data in order to estimate the magnitude and impact of the flood on erosion and sedimentation. Two major lake drainage events are reconstructed for the study area, during which approximately 90–50 km3 of water was released. Modelling results indicate that the lake outburst floods created a high‐energy flood wave with a height of 35–50 m in confined valley areas that rapidly spread out into the Lower Rhine Embayment eventually flowing into the North Sea basin. The sedimentary record of the outburst floods comprises poorly sorted coarse‐grained gravel bars, long‐wavelength bedforms and sandy bedforms deposited by supercritical and subcritical flows. Some parts of the sandy flood deposits are rich in reworked mammoth bones or mammoth and horse teeth, pointing to reworking of older fluvial sediments, hydraulic concentration and subsequent re‐sedimentation of vertebrate remains. These deposits are preserved in sheltered areas or at high elevations, well above the influence of postglacial fluvial erosion. The flood‐related erosional features include up to 80‐m‐deep scour pools, alluvial channels and streamlined hills.  相似文献   
6.
This paper deals with the influence of different humic substances (HS) on the enzyme activity (EA) of the proteolytic enzyme pronase E. The EA was determined by analyzing the concentration of the amino acid valine hydrolyzed from caseine. For amino acid analysis, a flourescence detector was used after precolumn derivatization and HPLC-separation of the hydrolysis products. The data show that the presence of HS has no adverse effects on amino acid analysis. Based on this result, a decrease of EA was observed in the presence of HS acting as enzyme inhibitors. Clear inhibition effects could be seen for different fulvic acids (HO3 FA, FBR FA and FBR 1.0 FA) at concentrations of 150 mg/L. In case of FBI-2 FA, higher concentrations were necessary to decrease the EA significantly. At an inhibitor concentration of 1500 mg/L the EA was mostly found to be less than 50%. The standard deviations of the results don't allow a differentiation between the HS of different origin and treatment. Specifying HS according to their influence on EA has to remain uncertain. As shown in a kinetic study of the hydrolysis of L-Leucine-2-naphthylamide-hydrochloride, the inhibitor HO3 FA decreases the maximum velocity of the reaction but has no effect on the Michaelis constant. These results indicate that this HS acts as a noncompetitive inhibitor.  相似文献   
7.
A method is described for the specific hydrolysis of amino acids from humic substances by using the proteolytic enzyme “Pronase E”. The amino acids are analyzed by a fluorescence detector after precolumn derivatization and HPLC-separation. The pattern and the concentration of amino acids after the enzymatic hydrolysis are set up for humic substances of different origin. Due to the results the enzymatic hydrolysis is suitable for the characterization of humic substances with a nitrogen content higher than 3%. As shown in a kinetic study of the hydrolysis of a fulvic acid the influence of humic substances on the enzyme activity increases in case of lower nitrogen content. Due to the specificity of the proteolytic enzyme the operationally defined method is limited as shown by a protein of a known amino acid content. The amino acids leucine, valine, tyrosine and histidine are released to the highest extent. The determined total extent for the hydrolysis of Insulin B is 26.34% and for Casein 38.37%. By comparison of the enzymatic hydrolysis with the classic acid hydrolysis the advantages of the biochemical method are the simple experimental handling and the mild reaction conditions. Amino acids which are very unstable like glutamine and asparagine can only be analyzed by the enzymatic hydrolysis.  相似文献   
8.
9.
The principle of common but differentiated responsibilities and respective capabilities (CBDRC) captures the idea that it is the common responsibility of states to protect and restore the environment but that the levels and forms of states’ individual responsibilities may be differentiated according to their own national circumstances. This principle has shaped the evolution of the climate regime and has played an important role in promoting compromise and agreement. It is argued that some twenty years after the adoption of the United Nations Framework Convention on Climate Change (UNFCCC), the principle of CBDRC remains as relevant as ever. The practice of Parties under the regime and, most recently, the concerted efforts to shape and flesh out the meaning of the principle, underscore the central role that it plays. At the same time, the binary understanding of CBDRC in the Kyoto Protocol is being replaced with a more nuanced, multifaceted understanding. The evolving interpretation of CBDRC is considered, and its continued relevance as the nucleus of a global burden-sharing regime for addressing climate change is demonstrated.

Policy relevance

The development of a common understanding of the principle of CBDRC is essential for the burden sharing and responsibilities under a future climate agreement. The CBDRC principle captures the idea that it is the common responsibility of states to protect and restore the environment, but that the levels and forms of states’ individual responsibilities may be differentiated according to their own national circumstances. This article informs the international climate change negotiations by considering the development of the principle of CBDRC under the UNFCCC over time. It is concluded that, although there has been a significant shift in how the principle is understood, it remains crucial to the integrity and stability of the climate regime.  相似文献   
10.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号