首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   5篇
  国内免费   1篇
测绘学   3篇
大气科学   16篇
地球物理   56篇
地质学   73篇
海洋学   20篇
天文学   6篇
综合类   1篇
自然地理   27篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   18篇
  2010年   12篇
  2009年   5篇
  2008年   12篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1982年   2篇
  1975年   1篇
  1968年   1篇
  1967年   3篇
排序方式: 共有202条查询结果,搜索用时 31 毫秒
1.
Rapid water level rise due to climate change has the potential to remobilize loose sediments along shorelines and increase the turbidity of nearshore waters, thereby impacting water quality and aquatic ecosystem health. Siling Lake is one of the largest and most rapidly expanding lakes on the Tibetan Plateau. Between 2000 and 2017, this lake experienced an increase in water level of about 8 m and a doubling in water turbidity. Here, using this lake as a study site, we used a wave model and high-resolution remote sensing of turbidity (Landsat-8) to assess the potential connection between water-level rise, enhanced wind-driven sediment resuspension and water turbidity. Our analysis revealed that strong bottom shear stresses triggered by wind-generated waves over newly flooded areas were related to an increase in water turbidity. The spatial variability of Siling Lake turbidity showed a strong dependence on local wind characteristics and fetch. Two factors combined to drive the increase in turbidity: (1) high wave energy leading to high bottom shear stresses, and (2) flooding of unvegetated shallow areas. Using a new relationship between wave energy and turbidity developed here, we expect the increase in turbidity of Siling Lake to taper off in the near future due to the steep landscape surrounding the lake that will prevent further flooding. Our results imply that rising water levels along the coast are not only expected to influence terrestrial ecosystems but could also change water quality. The methodology presented herein could be applied to other shorelines affected by a rapid increase in water level. © 2020 John Wiley & Sons, Ltd.  相似文献   
2.
Intertidal zones by definition are exposed to air at low tide, and the exposure duration can be weeks (e.g. during neap tides) depending on water level and bed elevation. Here we investigated the effect of varying exposure duration (6 h to 10 days) on intertidal mudflat erosion (measured using the EROMES device), where the effects of water content and biofilm biomass (using chlorophyll-a content as a proxy, Chl-a μg g−1) were taken into account. Sediments were collected between spring and summer (in October 2018, January 2019 and February 2019) from an intertidal site in the Firth of Thames, New Zealand. Longer exposure duration resulted in more stable sediments [higher erosion threshold (Ƭcr, N m−2) and lower erosion rate (ER, g m−2 s−1)]. After 10 days, exposure increased Ƭcr by 1.7 to 4.4 times and decreased ER by 11.6 to 21.5 times compared with 6 h of exposure. Chl-a and water content changed with exposure duration and were significantly correlated with changes in Ƭcr and ER. The stability of sediments after two re-submersion periods following exposure was also examined and showed that the stabilizing effect of exposure persisted even though water content had increased to non-exposure levels. Re-submersion was associated with an increase in Chl-a content, which likely counteracted the destabilizing influence of increased water content. A site-specific model, which included the interplay between evaporation and biofilm biomass, was developed to predict water content as a function of exposure duration. The modelled water content (WMod.) explained 98% of the observed variation in water content (WObs.). These results highlight how the exposure period can cause subtle changes to erosion regimes of sediments. An understanding of these effects (e.g. in sediment transport modelling) is critical to predicting the resilience of intertidal zones into the future, when sea-level rise is believed to exacerbate erosion in low-lying areas. © 2020 John Wiley & Sons, Ltd.  相似文献   
3.
Recent developments of the Middle East catalog   总被引:8,自引:2,他引:6  
This article summarizes a recent study in the framework of the Global Earth model (GEM) and the Earthquake Model of the Middle East (EMME) project to establish the new catalog of seismicity for the Middle East, using all historical (pre-1900), early and modern instrumental events up to 2006. According to different seismicity, which depends on geophysical, geological, tectonic, and seismicity data, this region is subdivided to nine subregions, consisting of Alborz–Azerbaijan, Afghanistan–Pakistan, Saudi Arabia, Caucasus, Central Iran, Kopeh–Dagh, Makran, Zagros, and Turkey (Eastern Anatolia; after 30° E). After omitting the duplicate events, aftershocks, and foreshocks by using the Gruenthal method, and uniform all magnitude to Mw scale, 28,244 main events remain for the new catalog of Middle East from 1250 B.C. through 2006. The magnitude of completeness (Mc) was determined as 4.9 for five out of nine subregions, where the least values of Mc were found to be 4.2. The threshold of Mc is around 5.5, 5.0, 4.5, and 4.0, for the time after 1950, 1963, 1975, and 2000, respectively. The average of teleseismic depths in all regions is less than 15 km. Totally, majority of depth for Kopeh–Dagh and Central Iran, Zagros, and Alborz–Azerbaijan, approximately, is 15, 13, and 11 km and for Afghanistan–Pakistan, Caucasus, Makran, Turkey (after 30° E), and Saudi Arabia is about 9 km.  相似文献   
4.
In order to decrease the simulation time of morphodynamic models, often-complex wave climates are reduced to a few representative wave conditions (RWC). When applied to embayed beaches, a test of whether a reduced wave climate is representative or not is to see whether it can recreate the observed equilibrium (long-term averaged) bathymetry of the bay. In this study, the wave climate experienced at Milagro Beach, Tarragona, Spain was discretized into ‘average’ and ‘extreme’ RWCs. Process-based morphodynamic simulations were sequenced and merged based on ‘persistent’ and ‘transient’ forcing conditions, the results of which were used to estimate the equilibrium bathymetry of the bay. Results show that the effect of extreme wave events appeared to have less influence on the equilibrium of the bay compared to average conditions of longer overall duration. Additionally, the persistent seasonal variation of the wave climate produces pronounced beach rotation and tends to accumulate sediment at the extremities of the beach, rather than in the central sections. It is, therefore, important to account for directional variability and persistence in the selection and sequencing of representative wave conditions as is it essential for accurately balancing the effects beach rotation events.  相似文献   
5.
As a result of their morphological complexity, large macroalgae show intra-thallus variations in their nutritional composition and secondary metabolite content, which influences the trophic ecology of herbivorous invertebrates, and ultimately their fitness. In this study, we evaluated for the first time the variability in nutritional quality (protein content, carbohydrates, lipids, and total organic matter), secondary metabolites (phlorotannins), and structure (shape and toughness) between blades and stipes of the macroalgae Durvillaea Antarctica. Specifically, we looked at their effect on feeding preference, rate of consumption, absorption efficiency, and growth rate of the amphipod Orchestoidea tuberculata, one of the most abundant organisms on Chilean sandy beaches. Proteins, carbohydrates, total organic matter and phlorotannin contents were significantly higher in blades than in stipes. Preference experiments revealed that the amphipods preferred blades when fresh pieces of blades and stipes were offered at the same time. Similar results were found when artificial food (in which structures of both parts of the alga were standardized) was offered, suggesting that shape and toughness of the two different parts of the alga did not influence preference patterns of O. tuberculata. Absorption efficiency of O. tuberculata was higher on blades compared to stipes. When the amphipods were kept with each of the algal parts separately (i.e. no choice), they consumed a significantly higher amount of stipe, which suggests that O. tuberculata used food quantity to compensate for the lower nutritional quality of stipes. The higher nutritional values of blades compared to stipes appears to explain observed preference patterns by O. tuberculata. Phlorotannin content did not appear to inhibit blade consumption, suggesting that the nutritional quality of the food could be more important than chemical defense in determining food choice in O. tuberculata. Growth did not differ between the amphipods maintained with either blades or stipes (i.e. no choice), which is consistent with the hypothesis of compensatory feeding. To conclude, O. tuberculata can actively select specific parts of an alga and this selection appears to be based on nutritional quality. The capacity for using different feeding strategies allow O. tuberculata, in some cases, to successfully exploit food types with different nutritional qualities.  相似文献   
6.
Specimens of coarse-grained Äspö diorite were axially compressed to observe stress-induced spalling. The specimens had a novel design characterized by two manufactured large radius notches on opposite sides. The tangential stress occurring in the notches aimed to represent the tangential loading around a circular opening. Fracture stages were monitored by acoustic emission measurements. Rock chips were formed similar to those found in situ, which indicates a similar fracture process. Slabs were cut out from the specimens and impregnated using a fluorescent material to visualize the cracks. The cracks were subsequently examined by the naked eye and by means of microscopy images, from which fracture paths could be identified and related to different minerals and their crystallographic orientations. The microscopy analyses showed how the stress field and the microstructure interact. Parallel cracks were formed 2–4 mm below the surface, sub-parallel to the direction of the maximum principal stress. The crack initiation, the roles of minerals such as feldspar, biotite and quartz and their grain boundaries and crystallographic directions are thoroughly studied and discussed in this paper. Scale effects, which relate to the stress gradient and microstructure, are discussed.  相似文献   
7.
8.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
It is well established that A-type granites enriched in high field strength elements, such as Zr, Nb and the REE, form in anorogenic tectonic settings. The sources of these elements and the processes controlling their unusual enrichment, however, are still debated. They are addressed here using neodymium and oxygen isotope analyses of samples from the 1.24 Ga Strange Lake pluton in the Paleoproterozoic Core Zone of Québec-Labrador, an A-type granitic body characterized by hyper-enrichment in the REE, Zr, and Nb. Age-corrected εNd values for bulk rock samples and sodic amphiboles (mainly arfvedsonite) from the pluton range from ?0.6 to ?5.7, and ?0.3 to ?5.3, respectively. The εNd values for the Napeu Kainiut quartz monzonite, which hosts the pluton, range from ?4.8 to ?8.1. The 147Sm/144Nd ratios of the suite and the host quartz monzonite range from 0.0967 to 0.1659, large variations that can be explained by in situ fractionation of early LREE-minerals (Strange Lake), and late hydrothermal HREE remobilization. Oxygen isotope analyses of quartz of both Strange Lake and the host yielded δ18O values between +8.2 and +9.1, which are considerably higher than the mantle value of 5.7 ± 0.2‰. Bulk rock oxygen isotope analyses of biotite-gneisses in the vicinity of the Strange Lake pluton yielded δ18O values of 6.3, 8.6 and 9.6‰. The negative εNd values and positive δ18O values of the Strange Lake and Napeu Kainiut samples indicate that both magmas experienced considerable crustal contamination. The extent of this contamination was estimated, assuming that the contaminants were sedimentary-derived rocks from the underlying Archean Mistinibi (para-) gneiss complex, which is characterized by low εNd and high δ18O values. Mixing of 5–15% of a gneiss, having an εNd value of ?15 and a δ18O value of +11, with a moderately enriched mantle source (εNd = +0.9, δ18O = +6.3) would produce values similar to those obtained for the Strange Lake granites. Based on analogies between the Nain Plutonic Suite and the Gardar alkaline igneous province (SW-Greenland), we conclude that the Strange Lake pluton and associated REE-mineralized anorogenic bodies formed from a combination of subduction-induced fertilization of the sublithospheric mantle, crustal extension and in situ magma evolution.  相似文献   
10.
Tides are often considered to be the dominant hydrodynamic process within mesotidal estuaries although waves can also have a large influence on intertidal erosion rates. Here, we use a combination of hydrodynamic measurements and sediment deposition records to determine the conditions under which observed waves are ‘morphologically significant’, in which case they influence tidal and suspended sediment flux asymmetry and subsequently infilling over geomorphological timescales. Morphological significant conditions were evaluated using data from contrasting arms in a dendritic mesotidal estuary, in which the orientation of the arms relative to the prevailing wind results in a marked difference in wave conditions, deposition rates and morphology. By defining the morphological significance of waves as a product of the magnitude of bed shear stress and frequency of occurrence, even small (but frequently occurring) winds are shown to be capable of generating waves that are morphologically significant given sufficient fetch. In the arm in which fetch length is restricted, only stronger but rare storm events can influence sediment flux and therefore tides are more morphologically significant over longer timescales. Water depth within this mesotidal estuary is shown to be a critical parameter in controlling morphological significance; the rapid attenuation of short period waves with depth results in contrasting patterns of erosion occurring during neaps and accretion during springs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号