首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   10篇
  国内免费   2篇
测绘学   1篇
大气科学   12篇
地球物理   28篇
地质学   13篇
海洋学   15篇
天文学   28篇
综合类   2篇
自然地理   13篇
  2024年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   12篇
  2008年   4篇
  2007年   11篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1972年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Since the Intermediate Oyashio Water (IOW) gradually accumulates in Sagami Bay, it can reasonably be supposed that the IOW also flows out from Sagami Bay, even though it may be altered by mixing with other waters. We have occasionally observed a water less than 34.2 psu with a potential density of 26.8 at the southeastern area off Izu Peninsula in July 1993 by the training vessel Seisui-maru of Mie University. Observational data supplied by the Japan Meteorological Agency and the Kanagawa Prefectural Fisheries Experimental Station show that the IOW of less than 34.1 psu was observed at northern stations of the line PT (KJ) off the Boso Peninsula and to the east of Oshima in the late spring 1993. Based upon these observations, it is concluded that the IOW flows out from Sagami Bay into the Shikoku Basin along southeastern area off the Izu Peninsula. The less saline water (<34.2 psu) was also observed to the west of Miyake-jima during the same cruise, and the westward intrusion of IOW from south of the Boso Peninsula to the Shikoku Basin through the gate area of the Kuroshio path over the Izu Ridge was detected. This event indicated that the IOW branched south of the Boso Peninsula and flowed into Sagami Bay and/or into the gate area over the Izu Ridge. The southward intrusion of IOW into the south of the Boso Peninsula is discussed in relation to the latitudinal location of the main axes of the Kuroshio and the Oyashio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
3.
4.
The Wakamiko submarine crater is a small depression located in Kagoshima Bay, southwest Japan. Marine shallow‐water hydrothermal activity associated with fumarolic gas emissions at the crater sea floor (water depth 200 m) is considered to be related with magmatic activity of the Aira Caldera. During the NT05‐13 dive expedition conducted in August 2005 using remotely operated vehicle Hyper‐Dolphine (Japan Agency for Marine‐Earth Science and Technology), an active shimmering site was discovered (tentatively named the North site) at approximately 1 km from the previously known site (tentatively named the South site). Surface sediment (up to 30 cm) was cored from six localities including these active sites, and the alteration minerals and pore fluid chemistry were studied. The pore fluids of these sites showed a drastic change in chemical profile from that of seawater, even at 30 cm below the surface, which is attributed to mixing of the ascending hydrothermal component and seawater. The hydrothermal component of the North site is estimated to be derived from a hydrothermal aquifer at 230°C based on the hydrothermal end‐member composition. Occurrence of illite/smectite interstratified minerals in the North site sediment is attributed to in situ fluid–sediment interaction at a temperature around 150°C, which is in accordance with the pore fluid chemistry. In contrast, montmorillonite was identified as the dominant alteration mineral in the South site sediment. Together with the significant low potassium concentration of the hydrothermal end‐member, the abundant occurrence of low‐temperature alteration mineral suggests that the hydrothermal aquifer in the South site is not as high as 200°C. Moreover, the montmorillonite is likely to be unstable with the present pore fluid chemistry at the measured temperature (117°C). This disagreement implies unstable hydrothermal activity at the South site, in contrast to the equilibrium between the pore fluid and alteration minerals in the North site sediment. This difference may reflect the thermal and/or hydrological structure of the Wakamiko Crater hydrothermal system.  相似文献   
5.
6.
Lower-tropospheric tropical synoptic-scale disturbances (TSDs) are associated with severe weather systems in the Asian Monsoon region. Therefore, exact prediction of the development and behavior of TSDs using atmospheric general circulation models is expected to improve weather forecasting for this region. Recent state-of-the art global cloud-system resolving modeling approaches using a Nonhydrostatic Icosahedral Atmospheric Model (NICAM) may improve representation of TSDs. This study evaluates TSDs over the western Pacific in output from an Atmospheric Model Intercomparison Project (AMIP)-like control experiment using NICAM. Data analysis compared the simulated and observed fields. NICAM successfully simulates the average activity, three-dimensional structures, and characteristics of the TSDs during the Northern summer. The variance statistics and spectral analysis showed that the average activity of the simulated TSDs over the western Pacific during Northern summer broadly captures that of observations. The composite analysis revealed that the structures of the simulated TSDs resemble the observed TSDs to a large degree. The simulated TSDs exhibited a typical southeast- to northwest-oriented wave-train pattern that propagates northwestward from near the equator around 150 ° E toward the southern coast of China. However, the location of the simulated wave train and wave activity center was displaced northward by approximately a few degrees of latitude from that in the observation. This displacement can be attributed to the structure and strength of the background basic flow in the simulated fields. Better representation of the background basic states is required for more successful simulation of TSDs.  相似文献   
7.
8.
9.
Microbial responses to the addition of oil with or without a chemical dispersant were examined in mesocosm and microcosm experiments by using denaturing gradient gel electrophoresis of bacterial ribosomal DNA and direct cell counting. When a water-soluble fraction of oil was added to seawater, increases in cell density were observed in the first 24h, followed by a decrease in abundance and a change in bacterial species composition. After addition of an oil-dispersant mixture, increases in cell density and changes in community structure coincided, and the amount of bacteria remained high. These phenomena also occurred in response to addition of only dispersant. Our results suggest that the chemical dispersant may be used as a nutrient source by some bacterial groups and may directly or indirectly prevent the growth of other bacterial groups.  相似文献   
10.
To further evaluate the potential of magnetic anisotropy techniques for determining the origin of the natural remanent magnetization (NRM) in sedimentary rocks, several new remanence anisotropy measurement techniques were explored. An accurate separation of the remanence anisotropy of magnetite and hematite in the same sedimentary rock sample was the goal.In one technique, Tertiary red and grey sedimentary rock samples from the Orera section (Spain) were exposed to 13 T fields in 9 different orientations. In each orientation, alternating field (af) demagnetization was used to separate the magnetite and hematite contributions of the high field isothermal remanent magnetization (IRM). Tensor subtraction was used to calculate the magnetite and hematite anisotropy tensors. Geologically interpretable fabrics did not result, probably because of the presence of goethite which contributes to the IRM. In the second technique, also applied to samples from Orera, an anisotropy of anhysteretic remanence (AAR) was applied in af fields up to 240 mT to directly measure the fabric of the magnetite in the sample. IRMs applied in 2 T fields followed by 240 mT af demagnetization, and thermal demagnetization at 90°C to remove the goethite contribution, were used to independently measure the hematite fabric in the same samples. This approach gave geologically interpretable results with minimum principal axes perpendicular to bedding, suggesting that the hematite and magnetite grains in the Orera samples both carry a depositional remanent magnetization (DRM). In a third experiment, IRMs applied in 13 T fields were used to measure the magnetic fabric of samples from the Dome de Barrot area (France). These samples had been demonstrated to have hematite as their only magnetic mineral. The fabrics that resulted were geologically interpretable, showing a strong NW-SE horizontal lineation consistent with AMS fabrics measured in the same samples. These fabrics suggest that the rock's remanence may have been affected by strain and could have originated as a DRM or a CRM.Our work shows that it is important to account for the presence of goethite when using high field IRMs to measure the remanence anisotropy of hematite-bearing sedimentary rocks. It also shows that very high magnetic fields (>10 T) may be used to measure the magnetic fabric of sedimentary rocks with highly coercive magnetic minerals without complete demagnetization between each position, provided that the field magnetically saturates the rock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号