首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   20篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  1983年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
The relationship between sea surface temperature (SST) and net heat flux (NHF) in the North Pacific over weekly to annual period bands was investigated using gridded datasets of SST obtained by the Advanced Microwave Scanning Radiometer for the Earth Observing System, and flux data produced by the Modern-era Retrospective-analysis for Research and Applications Reanalysis. This study focused on the phase difference between the SST and NHF, which can suggest the driving force between two co-varying parameters. The SST delay behind the NHF, with phase differences from π/4 to π/2, which suggests that the SST change would be controlled by the NHF, was commonly found over all periods. In the intra-annual (100- to 200-day periods) band, part of the coherent variations showed negative phase differences (around ?π to ?π/3), which were found in the western North Pacific and along ~30°N in the central North Pacific. The spatial scales of SST variability in the shorter band (weekly to intraseasonal: less than 100-day periods) are dominantly over 200?km. In contrast, the scales in the intra-annual band were in the range 50–150?km, where the negative phase differences were frequently found.  相似文献   
2.
3.
This study compares infrared and microwave measurements of sea surface temperature (SST) obtained by a single satellite. The simultaneous observation from the Global Imager (GLI: infrared) and the Advanced Microwave Scanning Radiometer (AMSR: microwave) aboard the Advanced Earth Observing Satellite-II (ADEOS-II) provided an opportunity for the intercomparison. The GLI-and AMSR-derived SSTs from April to October 2003 are analyzed with other ancillary data including surface wind speed and water vapor retrieved by AMSR and SeaWinds on ADEOS-II. We found no measurable bias (defined as GLI minus AMSR), while the standard deviation of difference is less than 1°C. In low water vapor conditions, the GLI SST has a positive bias less than 0.2°C, and in high water vapor conditions, it has a negative (positive) bias during the daytime (nighttime). The low spatial resolution of AMSR is another factor underlying the geographical distribution of the differences. The cloud detection problem in the GLI algorithm also affects the difference. The large differences in high-latitude region during the nighttime might be due to the GLI cloud-detection algorithm. AMSR SST has a negative bias during the daytime with low wind speed (less than 7 ms−1), which might be related to the correction for surface wind effects in the AMSR SST algorithm.  相似文献   
4.
This study developed a post-processing quality check (QC) process to eliminate cloud contamination in infrared sea surface temperature (SST) without manual handling. Cloudiness of a pixel was evaluated quantitatively, in which the graduated verifications and a comprehensive decision from a combination of several tests were conducted. Additionally, the quality of SST data at the pixel was measured by acceptable limits from reference SST, which were obtained from historical data. The QC processed data showed good accuracy below 0.8°C, even in the near-cloud area. Before the QC, their accuracies including near-cloud areas were as poor as 2–5°C.  相似文献   
5.
Ocean Dynamics - The short-lived events of high SST are called hot events (HEs) and can only be generated under the conditions of large daily heat gain due to strong solar radiation and weak wind....  相似文献   
6.
7.
Satellite-based microwave radiometers can measure sea surface temperature (SST) over wide areas, even under cloud cover, owing to the weak absorption of microwaves by cloud droplets. This advantage is not available in the case of infrared observations, hence SST data derived from microwave radiometers have been widely used for operational and research purposes in recent years. This paper reviews the significant algorithms, validations, and applications related to microwave observation of SST. The history and specifications of past and present microwave radiometers are also documented. Various physical properties, including sea surface salinity, sea surface wind, molecules in the atmosphere, and clouds, affect the accuracy of SST data estimated by satellite-based microwave radiometers. Estimation algorithms are designed to correct these effects by using microwave measurements in several frequency channels and by using data of ancillary geophysical parameters. Validation studies have shown that microwave radiometer SST data have high accuracy that is comparable to the accuracy of data obtained from infrared measurements. However, certain persistent problems, such as sea-surface wind correction, remain to be solved.  相似文献   
8.
In the previous study, merged sea surface temperature (SST) dataset called “New Generation SST” has been produced from several infrared and microwave satellite SSTs through an objective mapping. Here we examine the merged SST by comparison with moored buoy SST at 1 m depth, which is treated as true sea surface temperature. Comparison between wavelet spectra of merged and buoy SSTs shows that the former have larger amplitudes than those of the latter, which is partly explained as an aliasing effect due to TRMM Microwave Imager (TMI) aboard Tropical Rainfall Measuring Mission (TRMM) sampling on merged products. Coherency between wavelet-decomposed merged and buoy SSTs has high values in autumn and low ones in winter to spring. In winter, phase differences between them are positive, meaning that wavelet components of merged SST lag those of buoy SST. Reasons for delay and low coherency are: (1) seasonal components of merged SSTs are strongly affected by a lack of infrared SSTs due to clouds in winter, and (2) small-scale oceanic features, undetectable by coarse-resolution microwave SSTs, are blurred by the merging process. Improvements of merging methodology are discussed with regard to present study results.  相似文献   
9.
A sea surface temperature (SST) retrieval algorithm for Global Imager (GLI) aboard the ADEOS-II satellite has been developed. The algorithm is used to produce the standard SST product in the Japan Aerospace Exploration Agency (JAXA). The algorithm for cloud screening is formed by combinations of various types of tests to detect cloud-contaminated pixels. The combination is changed according to the solar zenith angle, which enables us to detect clouds even in the sun glitter region in daytime. The parameters in the cloud-detection tests have been tuned using the GLI global observations. SST is calculated by the Multi-Channel SST (MCSST) technique from the detected clear pixels. Using drifting buoy measurements, match-up data are produced to derive the coefficients of the MCSST equations and to examine their performance. The bias and RMSE of the GLI SST are 0.03 K and 0.66 K for daytime and, −0.01 K and 0.70 K for nighttime, respectively.  相似文献   
10.
An algorithm for estimating global sea surface temperatures (SST) from data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite has been developed empirically. Four atmospheric correction models for MODIS observations are examined, and the effects of ancillary data for corrections are discussed. A nonlinear (NLSST) model using high-temporal-resolution climatological SSTs as the first guess shows high accuracy and availability. The addition of a temperature-proportional term to the NLSST model effectively improves the estimate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号