首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   8篇
  国内免费   1篇
测绘学   8篇
大气科学   18篇
地球物理   71篇
地质学   82篇
海洋学   7篇
天文学   97篇
自然地理   13篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   11篇
  2015年   15篇
  2014年   6篇
  2013年   17篇
  2012年   8篇
  2011年   16篇
  2010年   14篇
  2009年   25篇
  2008年   11篇
  2007年   15篇
  2006年   15篇
  2005年   16篇
  2004年   10篇
  2003年   12篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   11篇
  1997年   1篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1971年   2篇
  1960年   1篇
排序方式: 共有296条查询结果,搜索用时 15 毫秒
1.
The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth’s topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth’s surface. It is based on an evolution of a surface, which approximates the Earth’s topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth’s surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth’s topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.  相似文献   
2.
In 2009, the Russian Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-Photon) spacecraft was launched, carrying the Polish Solar PHotometer In X-rays (SphinX). The SphinX was most sensitive in the spectral range 1.2?–?15 keV, thus an excellent opportunity appeared for comparison with the low-energy end of Ramaty High Energy Solar Spectroscopic Imager (RHESSI) spectra. Common spectral measurements with these instruments cover the range where most of the flare energy is accumulated. We have chosen four consecutive small solar events observed on 4 July 2009 at 13:43 UT, 13:48 UT, 13:52 UT, and 13:55 UT (RHESSI flare peak times) and used them to compare the data and results from the two instruments. Moreover, we included Geostationary Operational Environmental Satellite (GOES) records in our analysis. In practice, the range of comparison performed for SphinX and RHESSI is limited roughly to 3?–?6 keV. RHESSI fluxes measured with a use of one, four, and nine detectors in the 3?–?4 keV energy band agree with SphinX measurements. However, we observed that SphinX spectral irradiances are three times higher than those of RHESSI in the 4?–?6 keV energy band. This effect contributes to the difference in obtained emission measures, but the derived temperatures of plasma components are similar. RHESSI spectra were fitted using a model with two thermal components. We have found that the RHESSI hot component is in agreement with GOES, and the RHESSI hotter component fits the SphinX flaring component well. Moreover, we calculated the so-called thermodynamic measure and the total thermal energy content in the four microflares that we studied. The results obtained show that SphinX is a very sensitive complementary observatory for RHESSI and GOES.  相似文献   
3.
4.
Deforestation is expanding and accelerating into the remaining areas of undisturbed forest, and the quality of the remaining forests is declining today. Assessing the climatic impacts of deforestation can help to rectify this alarming situation. In this paper, how historical deforestation may affect global climate through interactive ocean and surface albedo is examined using an Earth system model of intermediate complexity (EMIC). Control and anomaly integrations are performed for 1000 years. In the anomaly case, cropland is significantly expanded since AD 1700. The response of climate in deforested areas is not uniform between the regions. In the background of a global cooling of 0.08 °C occurring with cooler surface air above 0.4 °C across 30° N to 75° N from March to September, the surface albedo increase has a global cooling effect in response to global-scale replacement of forests by cropland, especially over northern mid-high latitudes. The northern mid-latitude (30° N–60° N) suffers a prominent cooling in June, suggesting that this area is most sensitive to cropland expansion through surface albedo. Most regions show a consistent trend between the overall cooling in response to historical deforestation and its resulting cooling due to surface albedo anomaly. Furthermore, the effect of the interactive ocean on shaping the climate response to deforestation is greater than that of prescribed SSTs in most years with a maximum spread of 0.05 °C. This difference is more prominent after year 1800 than that before due to the more marked deforestation. These findings show the importance of the land cover change and the land surface albedo, stressing the necessity to analyze other biogeophysical processes of deforestation using interactive ocean.  相似文献   
5.
6.
Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units — the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.  相似文献   
7.
8.
This paper uses detailed mapping of eskers to address three questions which are important for reconstructing meltwater behaviour beneath contemporary and ancient ice masses: ‘What controls the morphology of simple and complex esker systems?’, ‘How do esker systems evolve through time?’ and ‘Are esker patterns compatible with groundwater controlled hydraulic spacing of esker tunnels?’. Esker crestlines and widths are mapped on the Breiðamerkurjökull foreland for eight time slices between 1945 and 2007, from high resolution (~50 cm) aerial photography, permitting their long‐term morphological evolution to be analysed in a high level of detail. We find that complex eskers develop where meltwater and sediment is abundant, such that sediment clogs channels, forming distributary eskers. Isolated eskers are simpler and smaller and reflect less abundant meltwater and sediment, which is unable to clog channels. Eskers may take several decades to emerge from outwash deposits containing buried ice and can increase or decrease in size when ice surrounding and underlying them melts out. It has been suggested that groundwater–channel coupling dictates the spacing between eskers at Breiðamerkurjökull. Our results do not dispute this, but suggest that the routing of sediment and meltwater through medial moraines is an additional important control on esker location and spacing. These results may be used to better understand the processes surrounding esker formation in a variety of geographical settings, enabling a more detailed understanding of the operation of meltwater drainage systems in sub‐marginal zones beneath glaciers and ice sheets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
The lithosphere-asthenosphere boundary (LAB) is investigated recently very effectively, mostly using seismic methods because of their deep penetration and relatively good resolution. The nature of LAB is still debated, particularly under “cold” Precambrian shields and platforms. Passive experiment “13 BB star” is dedicated to study deep structure of the Earth’s interior in the marginal zone of the East European craton in northern Poland. The seismic network consists of 13 broadband stations on the area of ca. 120 km in diameter. The network is located in the area of well-known sedimentary cover and crustal structure. Good records obtained till now, and expected during next 1-year long recording campaign, should yield images of detailed structure of the LAB, ?410”, “?520”, and ?660” km discontinuities, as well as mantle-core boundary and inner core.  相似文献   
10.
The Martian meteorites comprise mantle‐derived mafic to ultramafic rocks that formed in shallow intrusions and/or lava flows. This study reports the first in situ platinum‐group element data on chromite and ulvöspinel from a series of dunitic chassignites and olivine‐phyric shergottites, determined using laser‐ablation ICP‐MS. As recent studies have shown that Ru has strongly contrasting affinities for coexisting sulfide and spinel phases, the precise in situ analysis of this element in spinel can provide important insights into the sulfide saturation history of Martian mantle‐derived melts. The new data reveal distinctive differences between the two meteorite groups. Chromite from the chassignites Northwest Africa 2737 (NWA 2737) and Chassigny contained detectable concentrations of Ru (up to ~160 ppb Ru) in solid solution, whereas chromite and ulvöspinel from the olivine‐phyric shergottites Yamato‐980459 (Y‐980459), Tissint, and Dhofar 019 displayed Ru concentrations consistently below detection limit (<42 ppb). The relatively elevated Ru signatures of chromite from the chassignites suggest a Ru‐rich (~1–4 ppb) parental melt for this meteorite group, which presumably did not experience segregation of immiscible sulfide liquids over the interval of mantle melting, melt ascent, and chromite crystallization. The relatively Ru‐depleted signature of chromite and ulvöspinel from the olivine‐phyric shergottites may be the consequence of relatively lower Ru contents (<1 ppb) in the parental melts, and/or the presence of sulfides during the crystallization of the spinel phases. The results of this study illustrate the significance of platinum‐group element in situ analysis on spinel phases to decipher the sulfide saturation history of magmatic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号