首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   12篇
  国内免费   4篇
测绘学   9篇
大气科学   4篇
地球物理   70篇
地质学   109篇
海洋学   7篇
天文学   30篇
综合类   7篇
自然地理   13篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   11篇
  2019年   11篇
  2018年   17篇
  2017年   20篇
  2016年   27篇
  2015年   11篇
  2014年   19篇
  2013年   28篇
  2012年   13篇
  2011年   19篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
1.
Though it is well known that vegetation affects the water balance of soils through canopy interception and evapotranspiration, its hydrological contribution to soil hydrology and stability is yet to be fully quantified. To improve understanding of this hydrological process, soil water dynamics have been monitored at three adjacent hillslopes with different vegetation covers (deciduous tree cover, coniferous tree cover, and grass cover), for nine months from December 2014 to September 2015. The monitored soil moisture values were translated into soil matric suction (SMS) values to facilitate the analysis of hillslope stability. Our observations showed significant seasonal variations in SMS for each vegetation cover condition. However, a significant difference between different vegetation covers was only evident during the winter season where the mean SMS under coniferous tree cover (83.6 kPa) was significantly greater than that under grass cover (41 kPa). The hydrological reinforcing contribution due to matric suction was highest for the hillslope with coniferous tree cover, while the hillslope with deciduous tree cover was second and the hillslope with grass cover was third. The greatest contributions for all cover types were during the summer season. During the winter season, the wettest period of the monitoring study, the additional hydrological reinforcing contributions provided by the deciduous tree cover (1.5 to 6.5 kPa) or the grass cover (0.9 to 5.4 kPa) were insufficient to avoid potential slope failure conditions. However, the additional hydrological reinforcing contribution from the coniferous tree cover (5.8 to 10.4 kPa) was sufficient to provide potentially stable hillslope conditions during the winter season. Our study clearly suggests that during the winter season the hydrological effects from both deciduous tree and grass covers are insufficient to promote slope stability, while the hydrological reinforcing effects from the coniferous tree cover are sufficient even during the winter season. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
2.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
3.
4.
Nitrate pollution of groundwater in Toyserkan,western Iran   总被引:5,自引:2,他引:3  
A total of 95 groundwater samples were collected from Toyserkan, western Iran to assess the chemical composition and nitrate (NO3 ) status of groundwater. The most prevalent water type is Ca–HCO3 followed by water types Ca–Mg–HCO3. In comparison with the World Health Organization (WHO) drinking water guideline of 50 mg l−1 for NO3 , a total of nine wells (9.5%) showed higher concentrations. In 36% of samples (34) NO3 concentration was low (<20 mg l−1), and in 53.7% of samples (51), in the range of 20–50 mg l−1. The samples were classified into four groups based on NO3 and chloride (Cl) concentrations. Of the samples, 40% were classified as group 4 and were relatively high in Cl and NO3 (Cl > 47 mg l−1, NO3  > 27 mg l−1). The high correlation between NO3 and Cl (r = 0.86, p < 0.01) is consistent with a manure source, resulting from the practice of adding salt to animal feed. Pollution of groundwaters appeared to be affected by the application of inorganic fertilizer at greater than agronomic rates, Cl-salt inputs, and irrigation practice.  相似文献   
5.
Groundwater is the major source of drinking water in Nahavand city. However, the groundwater quality at the agricultural areas has been deteriorating in recent years. Ground water quality monitoring is a tool which provides important information for water management and sustainable development of the water resources in Nahavand. Hydrochemical investigations were carried out in an agricultural area in Nahavand, western Iran, to assess chemical composition of groundwater. In this study, 64 representative groundwater samples were collected from different irrigation wells and analyzed for pH, electrical conductivity, major ions, and nitrate. The results of the chemical analysis of the groundwater showed that concentrations of ions vary widely and the most prevalent water type is Ca–Mg–HCO3, followed by other water types: Ca–HCO3, Ca–Na–HCO3, and Na–Cl, which is in relation with their interactions with the geological formations of the basin, dissolution of feldspars and chloride and bicarbonate minerals, and anthropogenic activities. Thirty-seven percent of the water samples showed nitrate (NO3 ) concentrations above the human affected value (13 mg L−1). The phosphorous (P) concentration in groundwater was between 0.11 and 0.90 mg L−1, with an average value of 0.30 mg L−1, with all of the samples over 0.05 mg L−1. The most dominant class C2-S1 (76.5%) was found in the studied area, indicating that sodicity is very low and salinity is medium, and that these waters are suitable for irrigation in almost all soils. Agronomic practices, such as cultivation, cropping, and irrigation water management may decrease the average NO3 concentration in water draining from the soil zone.  相似文献   
6.
7.
How to select a limited number of strong ground motion records (SGMRs) is an important challenge for the seismic collapse capacity assessment of structures. The collapse capacity is considered as the ground motion intensity measure corresponding to the drift‐related dynamic instability in the structural system. The goal of this paper is to select, from a general set of SGMRs, a small number of subsets such that each can be used for the reliable prediction of the mean collapse capacity of a particular group of structures, i.e. of single degree‐of‐freedom systems with a typical behaviour range. In order to achieve this goal, multivariate statistical analysis is first applied, to determine what degree of similarity exists between each selected small subset and the general set of SGMRs. Principal Component analysis is applied to identify the best way to group structures, resulting in a minimum number of SGMRs in a proposed subset. The structures were classified into six groups, and for each group a subset of eight SGMRs has been proposed. The methodology has been validated by analysing a first‐mode‐dominated three‐storey‐reinforced concrete structure by means of the proposed subsets, as well as the general set of SGMRs. The results of this analysis show that the mean seismic collapse capacity can be predicted by the proposed subsets with less dispersion than by the recently developed improved approach, which is based on scaling the response spectra of the records to match the conditional mean spectrum. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
8.
An integral concept of ecological research is the constraint of biodiversity along latitudinal and environmental gradients. The Red Sea features a natural example of a latitudinal gradient of salinity, temperature and nutrient richness. Coral reefs along the Red Sea coasts are supported with allochthonous resources such as oceanic and neritic phytoplankton and zooplankton; however, relatively little is known about how the ecohydrography correlates with plankton biodiversity and abundance. In this article we present the biodiversity of phytoplankton and zooplankton in Red Sea coral reefs. Oceanographic data (temperature, salinity), water samples for nutrient analysis, particulate organic matter, phytoplankton and zooplankton, the latter with special reference to Copepoda (Crustacea), were collected at nine coral reefs over ~1500 km distance along the Red Sea coast of Saudi Arabia. The trophic state of ambient waters [as indicated by chlorophyll a (Chl a)] changed from strong oligotrophy in the north to mesotrophy in the south and was associated with increasing biomasses of Bacillariophyceae, picoeukaryotes and Synechococcus as indicated by pigment fingerprinting (CHEMTAX) and flow cytometry. Net‐phytoplankton microscopy revealed a Trichodesmium erythraeum (Cyanobacteria) bloom north of the Farasan Islands. Several potentially harmful algae, including Dinophysis miles and Gonyaulax spinifera (Dinophyceae), were encountered in larger numbers in the vicinity of the aquaculture facilities at Al Lith. Changes in zooplankton abundance were mainly correlated to the phytoplankton biomass following the latitudinal gradient. The largest zooplankton abundance was observed at the Farasan Archipelago, despite high abundances of copepodites, veligers (Gastropoda larvae) and Chaetognatha at Al Lith. Although the community composition changed over latitude, biodiversity indices of phytoplankton and zooplankton did not exhibit a systematic pattern. As this study constitutes the first current account of the plankton biodiversity in Red Sea coral reefs at a large spatial scale, the results will be informative for ecosystem‐based management along the coastline of Saudi Arabia.  相似文献   
9.
This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Iran. A stratified random sampling method was used to collect topographic, edaphic, management and vegetation data. The density and cover percentage of perennial species were measured quantitatively. Indicator species were identified using the two-way indicator species analysis. Besides calculating physiognomic factors in sample sites, 24 soil samples were collected from 0 to 30 cm of soil depth and analyzed in terms of gravel percentage, texture, saturation moisture, organic matter, pH and electrical conductivity in saturation extract, lime percentage, soluble calcium and magnesium, available phosphorus, Cation Exchange Capacity(CEC) and soluble sodium and potassium. Multivariate techniques including Canonical Correspondence Analysis and Multi-Dimensional Scaling were used to explore the relationships of species with environmental and management variables. Seven plants were identified as indicator species due to being significantly correlated with management(grazing or non-grazing) and edaphic variables such as CEC, soil texture, pH, CaCO_3 percentage and physiographic variable including slope, elevation, and convex and concave formations(p 0.05). Overall, overgrazing and its subsequent effects on soil characteristics, loss of vegetation cover and trampling were found as the major causes of deterioration. Sustainable and integrated management practices such as the implementation of appropriate grazing systems were suggested to enhance soil quality and reduce the accelerated erosion in upper dam zones.  相似文献   
10.
Several proposals are explored for the hazard and intensity measure (IM) consistent selection of bidirectional ground motions to assess the performance of 3D structural models. Recent studies have shown the necessity of selecting records that thoroughly represent the seismicity at the site of interest, as well as the usefulness of efficient IMs capable of estimating the response of buildings with low scatter. However, the advances realized are mostly geared towards the structural analysis of 2D models. Few are the combined record, and IM selection approaches suggested expressly for nonlinear dynamic analysis of 3D structural models, especially when plan asymmetry and torsion sensitivity come into play. Conditional spectrum selection is leveraged and expanded here to offer a suite of approaches based on both scalar and vector IMs that convey information from two orthogonal horizontal components of the ground motion. Applications on multiple 3D building models highlight the importance of (a) employing the same IM for both record selection and response assessment and (b) maintaining hazard consistency in both horizontal components, when using either a scalar or a vector IM. All tested approaches that respect these conditions can be viable, yet the one based on the geometric mean of multiple spectral ordinates from both components over a period range seems to hold the most promise for general use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号