首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   4篇
测绘学   9篇
大气科学   5篇
地球物理   27篇
地质学   38篇
海洋学   3篇
天文学   12篇
综合类   5篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   10篇
  2017年   10篇
  2016年   9篇
  2015年   1篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   8篇
  2010年   4篇
  2009年   7篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
1.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans.  相似文献   
2.
Several small lensoidal bodies of felsic volcanics are exposed in a curvilinear pattern within the brecciated granitoids of Bundelkhand Gneissic Complex (BGC) at Mohar. Sub-surface data reveals extensive presence of these felsic volcanics below the sediment of Vindhyan Supergroup. It occurs like a sheet with thickness varying from 12 m to 134 m. Its lateral extent has been traced upto 4.8 km. Multiple flows of felsic magma are identified based on colour, granularity, cross cutting relations and cyclic distribution of multiple vesicular bands along the entire thickness of felsic magma. The felsic rock contains upto 13.21% K2O. Chemical composition of these felsic volcanics varies across the column. Petrographically and chemically all these felsic volcanics are identified as rhyolite or rhyolite tuff.  相似文献   
3.
The present study is carried out to examine the impact of temperature and humidity profiles from moderate resolution imaging spectroradiometer (MODIS) or/and atmospheric infrared sounder (AIRS) on the numerical simulation of heavy rainfall events over the India. The Pennsylvania State University–National Centre for Atmospheric Research fifth-generation mesoscale model (MM5) and its three-dimensional variational (3D-Var) assimilation technique is used for the numerical simulations. The heavy rainfall events occurred during October 26–29, 2005, and October 27–30, 2006, were chosen for the numerical simulations. The results showed that there were large differences observed in the initial meteorological fields from control experiment (CNT; without satellite data) and assimilation experiments (MODIS (assimilating MODIS data), AIRS; (assimilating AIRS data); BOTH (assimilating MODIS and AIRS data together)). The assimilation of satellite data (MODIS, AIRS, and BOTH) improved the predicted thermal and moisture structure of the atmosphere when compared to CNT. Among the experiments, the predicted track of tropical depressions from MODIS was closer to the observed track. Assimilation of MODIS data also showed positive impact on the spatial distribution and intensity of predicted rainfall associated with the depressions. The statistical skill scores obtained for different experiments showed that assimilation of satellite data (MODIS, AIRS, and BOTH) improved the rainfall prediction skill when compared to CNT. Root mean square error in quantitative rainfall prediction is less in the experiment which assimilated MODIS data when compared to other experiments.  相似文献   
4.
The impact of realistic representation of sea surface temperature (SST) on the numerical simulation of track and intensity of tropical cyclones formed over the north Indian Ocean is studied using the Weather Research and Forecast (WRF) model. We have selected two intense tropical cyclones formed over the Bay of Bengal for studying the SST impact. Two different sets of SSTs were used in this study: one from TRMM Microwave Imager (TMI) satellite and other is the weekly averaged Reynold’s SST analysis from National Center for Environmental Prediction (NCEP). WRF simulations were conducted using the Reynold’s and TMI SST as model boundary condition for the two cyclone cases selected. The TMI SST which has a better temporal and spatial resolution showed sharper gradient when compared to the Reynold’s SST. The use of TMI SST improved the WRF cyclone intensity prediction when compared to that using Reynold’s SST for both the cases studied. The improvements in intensity were mainly due to the improved prediction of surface latent and sensible heat fluxes. The use of TMI SST in place of Reynold’s SST improved cyclone track prediction for Orissa super cyclone but slightly degraded track prediction for cyclone Mala. The present modeling study supports the well established notion that the horizontal SST gradient is one of the major driving forces for the intensification and movement of tropical cyclones over the Indian Ocean.  相似文献   
5.
6.
Groundwater levels in hard-rock areas in India have shown very large declines in the recent past. The situation is becoming more critical due to a paucity of rainfall, limited surface water resources and an increasing pattern of groundwater extraction in these areas. Consequently, the Ground Water Department with the aid of World Bank has implemented the water structuring programme to mitigate groundwater scarcity and to develop a viable solution for sustainable development in the region. The present study has been undertaken to assess the impact of artificial groundwater recharge structures in the hard-rock area of Rajasthan, India. In this study groundwater level data (pre-monsoon and post-monsoon) of 85 dug-wells are used, spread over an area of 413.59 km2. The weathered and fractured gneissic basement rocks act as major aquifer in the area. Spatial maps for pre- and post-monsoon groundwater levels were prepared using the kriging interpolation technique with best fitted semi-variogram models (Spherical, Exponential and Gaussian). The groundwater recharge is calculated spatially using the water level fluctuation method. The entire study period (2004–2011) is divided into pre- (2004–2008) and post-intervention (2009–2011) periods. Based on the identical nature of total monsoon rainfall, two combinations of average (2007 and 2009) and more than average (2006 and 2010) rainfall years are selected from the pre- and post-intervention periods for further comparisons. All of the water harvesting structures are grouped into the following categories: as anicuts (masonry overflow structure); percolation tanks; subsurface barriers; and renovation of earthen ponds/nadis. A buffer of 100 m around the intervention site is taken for assessing the influence of these structures on groundwater recharge. The relationship between the monsoon rainfall and groundwater recharge is fitted by power and exponential functions for the periods of 2004–2008 and 2008–2011 with R 2 values of 0.95 and 0.98, respectively. The average groundwater recharge is found to be 18% of total monsoon rainfall prior to intervention and it became 28% during the post-intervention period. About 70.9% (293.43 km2) of the area during average rainfall and more than 95% (396.26 km2) of the area during above-average rainfalls show an increase in groundwater recharge after construction of water harvesting structures. The groundwater recharge pattern indicates a positive impact within the vicinity of intervention sites during both average and above-average rainfall. The anicuts are found to be the most effective recharge structures during periods of above-average rainfall, while subsurface barriers are responded well during average rainfall periods. In the hard-rock terrain, water harvesting structures produce significant increases in groundwater recharge. The geo-spatial techniques that are used are effective for evaluating the response of different artificial groundwater recharge techniques.  相似文献   
7.
Morpho-tectonic study plays an important role in deciphering the effects of tectonic activity in the geomorphic evolution of the drainage basins.Romushi watershed forms one of the major watersheds of the intermontane Karewa Basin of Kashmir Valley.The Karewa sediments are characterized by glacio-fluvio-lacustrine deposits capped by the aeolian loess.The geomorphic,morphometric and lithostratigraphic studies of these cap deposits have been carried out to elucidate the effect of tectonics on the geomorphic evolution of Romushi Watershed.Geomorphic mapping was carried out using GPS measurements,DEM at 30m resolution,Topographic Position Index(TPI) model,topographic maps,LANDSAT TM Imagery and field data.Morphometric and morphotectonic analyses in GIS environment were used to calculate various geomorphic indices(Mountain Front Sinuosity Index,Bifurcation Ratio,Asymmetry Factor,River Profile,etc).These indices reveal that the tectonic uplift observed in the region due to Himalayan orogeny coupled with mass movement and aeolian deposition have dominated the landscape evolution of intermontane Karewa Basin of Kashmir throughout the Late Quaternary Period.Additional data from lithostratigraphic measurements were analyzed to understand the geomorphic evolution of intermontane Karewa Basin.The data revealed that the basin has experienced differential uplift and erosion rates from time to time in the geological past.This was corroborated by the results from the morphometric and morphotectonic analysis.  相似文献   
8.
9.
A three-step hierarchical Semi Automated Empirical Methane Emission Model (SEMEM) has been used to estimate methane emission from wetlands and waterlogged areas in India using Moderate Resolution Imagine Spectroradiometer (MODIS) sensor data onboard Terra satellite. Wetland Surface Temperature (WST), methane emission fluxes and wetland extent have been incorporated as parameters in order to model the methane emission. Analysis of monthly MODIS data covering the whole of India from November 2004 to April 2006 was carried out and monthly methane emissions have been estimated. Interpolation techniques were adopted to fill the data gaps due to cloudy conditions during the monsoon period. AutoRegressive Integrated Moving Average (ARIMA) model has been fitted to estimate the emitted methane for the months of May 2006 to August 2006 using SPSS software.  相似文献   
10.
The climate change of the twentieth century had an evident effect on glacier environments of the Himalaya. Temporal images of Indian Remote Sensing satellites provide an opportunity to monitor the recession of glacier and development of glacial lakes in the Himalayan cryosphere with a cost to time benefit ratio. The recession of Milam glacier and subsequent growth of a proglacial lake near the snout was analysed using Resourcesat-1 and Resourcesat-2 data. The recession of 480 m during 2004 to 2011 and growth of 47 epiglacial ponds over Milam glacier shows the glacier is in a state of imbalance and losing the ice by downwasting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号