首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   28篇
  国内免费   12篇
测绘学   34篇
大气科学   36篇
地球物理   130篇
地质学   290篇
海洋学   19篇
天文学   38篇
综合类   4篇
自然地理   22篇
  2023年   3篇
  2022年   12篇
  2021年   26篇
  2020年   26篇
  2019年   24篇
  2018年   52篇
  2017年   42篇
  2016年   71篇
  2015年   33篇
  2014年   50篇
  2013年   63篇
  2012年   42篇
  2011年   41篇
  2010年   26篇
  2009年   20篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  1998年   3篇
  1997年   4篇
  1991年   1篇
  1975年   3篇
排序方式: 共有573条查询结果,搜索用时 15 毫秒
1.
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth’s ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole–type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 ? 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.  相似文献   
2.
Natural Resources Research - Machine learning (ML) schemes can enhance success in geochemical prospectivity mapping. This study has examined the effectiveness of several feature extraction or...  相似文献   
3.

The compression index (Cc), which is used to calculate the consolidation settlement of fine-grained soils, can be determined through consolidation testing. Given that exploring the soil in a local region is highly important to determine the correlation between the Cc and other soil indices, the present study investigated these correlations in undisturbed and disturbed samples through 130 consolidation tests and determining the Cc of Tehran clay. The results are suggestive of the validity of the linear correlation between the Cc and the unit weight and initial void ratio of the soil, with several relations presented to estimate the Cc of Tehran clay soil. In contrast, the initial water content, liquid limit and the plasticity index do not produce reliable correlations with the Cc of the local clay soil, and a relation based on these index parameters cannot be recommended in this area. Further, the presented empirical correlations were compared with the existing ones. More over time-displacement and e-log σ’ graphs for undisturbed and disturbed samples are compared and stress history of the site are presented. The results are significant in terms of engineering applications, saving time and money and provides an initial estimation of compression index.

  相似文献   
4.

Design of reinforced soil structures is greatly influenced by soil–geosynthetic interactions at interface which is normally assessed by costly and time consuming laboratory tests. In present research, using the results of large-scale direct shear tests conducted on soil–anchored geogrid samples a model for predicting Enhanced Interaction Coefficient (EIC) is proposed enabling researchers/engineers easily, quickly and at no cost to estimate soil–geosynthetic interactions. In this regard well and poorly graded sands, anchors of three different size and anchorage lengths from the shear surface together with normal pressures of 12.5, 25 and 50 kPa were used. Artificial Intelligence (AI) called the Gene Expression Programming (GEP) was adopted to develop the model. Input variables included coefficients of curvature and uniformity, normal pressure, effective grain size, anchor base and surface area, anchorage length and the output variable was EIC. Contributions of input variables were evaluated using sensitivity analysis. Excellent correlation between the GEP-based model and the experimental results were achieved showing that the proposed model is well capable of effectively estimating soil–anchored geogrid enhanced interaction coefficient. Sensitivity analysis for parameter importance shows that the most influential variables are normal pressure (σn) and anchorage length (L) and the least effective parameters are average particle size (D50) and anchor base area (Ab).

  相似文献   
5.
Spectral methods and 2 years of daily data were used to estimate the phase lag between precipitation and groundwater-level response, and two decades of quarterly data were used to analyze the interaction between precipitation, lake levels and groundwater in the Trout Lake watershed located in Vilas County, Wisconsin, USA. The phase-lag function between precipitation and groundwater response is used to estimate recharge travel time. The recharge travel time and precipitation–groundwater–lake interactions have been traditionally studied using time-domain methods such as physically-based modeling. In this article, the innovative and efficient use of spectral methods is demonstrated to uncover the time scales that are significant in those interactions and estimate the recharge travel time, which is extracted from the underlying daily time series data. The results consistently show that precipitation leads groundwater-level response by up to 5 days in all cases. The effects of precipitation on lake and groundwater levels display strong similarities. Both the precipitation–lake level and the precipitation–groundwater level coherency functions show significant peaks at interannual and seasonal frequencies. The groundwater level–lake level coherency function shows a significant, broad peak at interannual frequencies, and no significant peak at seasonal frequencies, demonstrating the predominance of annual and lower frequencies in groundwater–lake interaction.  相似文献   
6.
Soil particle size distribution (PSD) is used to estimate some soil processes, soil moisture characteristics, and infiltration rate (IR). Prediction of infiltration rate from soil texture data requires an accurate characterization of PSD. The objective of this study was to determine more important primary particle diameters that control IR. The experiments were conducted using double-ring method with constant head of 5 cm in 15 different soils and three replications. The range of measured IR for studied soils varied from 1.6 to 30.66 cm h?1. The results indicated that the primary PSD had a significant influence on IR. In other words, most D n fractions had significant positive effect on the final IR. Among different fractions, D 30, D 40, and D 60 showed higher relationships with IR than the others. These diameters are attributed to particles with diameter of 0.05, 0.08, and 0.16 mm, respectively. The results also showed that increasing the percent of sand have intensified influence on increasing the final IR. Reversely, clay and silt contents showed negative effects on final IR. Furthermore, the CaCO3 had a meaningful effect on the IR that showed the importance of lime in arid and semiarid regions. Finally, it is revealed that the role of texture was important, especially in behavior of infiltration, runoff, and production capability.  相似文献   
7.
This paper emphasises the true realisation of Cone Penetration Test (CPT) profiles considering non-stationary nature of the data. Formulation of stationary random field theory has been modified and adapted to non-stationary state in order to take into account the mean and variance variability for soil properties. Multi-variance correlation matrix along with the Cholesky decomposition technique was employed to produce realisations of non-homogenous and non-stationary random fields of CPT profiles. A piecewise and segmental data realisation according to the lithology and site class specifications acquired directly from CPT data is adopted in this study so as to render an accurate data simulation. For validation of proposed method 8 CPT test profiles collected from Urmia Lake site have been introduced and simulated by the stationary and non-stationary algorithms. The mean correlation coefficient between the actual CPT data profiles and related realisations along with some other important statistical parameters and their coefficients of variation strongly demonstrate that non-stationary random field generation technique gives quite better accuracy, by comparison to the conventional stationary random field generation scheme.  相似文献   
8.
Supported Axisymmetric Tunnels Within Linear Viscoelastic Burgers Rocks   总被引:4,自引:2,他引:2  
An exact closed form solution is derived for the mechanical behaviour of a linear viscoelastic Burgers rock around an axisymmetric tunnel, supported by a linear elastic ring. Analytical formulae are provided for the displacement of the rock/lining interface and for the pressure exerted by the rock on the lining, taking into account the stiffness and its installation time. Results calculated from these formulae do validate the corresponding numerical results of a 2D finite differences code. Further, comparison to previous existing solutions for the same viscoelastic model indicates similarities and differences. A parametric study is performed to investigate the effect of the viscoelastic constants, the stiffness and installation time of the support. The derived closed form solution is used to construct the time-dependent Supported Ground Reaction Curves of the viscoelastic rock, i.e. the time contour plots on the convergence confinement diagram. The importance of the effect of the support on the restrained rock creep and the exerted pressure on the lining, during the design life of a structure, is examined.  相似文献   
9.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   
10.
Of particular concern in the monitoring of gas injection for the purposes of storage, disposal or improved oil recovery is the exact spatial distribution of the gas volumes in the subsurface. In principle this requirement is addressed by the use of 4D seismic data, although it is recognized that the seismic response still largely provides a qualitative estimate of moved subsurface fluids. Exact quantitative evaluation of fluid distributions and associated saturations remains a challenge to be solved. Here, an attempt has been made to produce mapped quantitative estimates of the gas volume injected into a clastic reservoir. Despite good results using three accurately repeated seismic surveys, time‐delay and amplitude attributes reveal fine‐scale differences though large‐scale agreement in the estimated fluid movement. These differences indicate disparities in the nature of the two attributes themselves, which can be explained by several possible causes. Of most impact are the effects of processing and migration, wave interference effects and noise from non‐repeatability of the seismic surveys. This subject highlights the need for a more careful consideration in 4D acquisition, amplitude processing and use of true amplitude preserving attributes in quantitative interpretation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号