首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69163篇
  免费   1568篇
  国内免费   520篇
测绘学   1735篇
大气科学   5636篇
地球物理   14392篇
地质学   22376篇
海洋学   6172篇
天文学   15566篇
综合类   142篇
自然地理   5232篇
  2020年   521篇
  2019年   532篇
  2018年   1014篇
  2017年   1010篇
  2016年   1458篇
  2015年   1092篇
  2014年   1507篇
  2013年   3485篇
  2012年   1625篇
  2011年   2466篇
  2010年   2111篇
  2009年   3085篇
  2008年   2818篇
  2007年   2508篇
  2006年   2596篇
  2005年   2226篇
  2004年   2354篇
  2003年   2161篇
  2002年   2069篇
  2001年   1838篇
  2000年   1702篇
  1999年   1461篇
  1998年   1467篇
  1997年   1440篇
  1996年   1191篇
  1995年   1265篇
  1994年   1130篇
  1993年   1036篇
  1992年   986篇
  1991年   840篇
  1990年   1056篇
  1989年   883篇
  1988年   789篇
  1987年   980篇
  1986年   849篇
  1985年   1082篇
  1984年   1268篇
  1983年   1193篇
  1982年   1078篇
  1981年   1039篇
  1980年   893篇
  1979年   885篇
  1978年   916篇
  1977年   849篇
  1976年   795篇
  1975年   738篇
  1974年   744篇
  1973年   760篇
  1972年   467篇
  1971年   406篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Transmission electron microscope studies of fine‐grained rims in three CM2 carbonaceous chondrites, Y‐791198, Murchison, and ALH 81002, have revealed the presence of widespread nanoparticles with a distinctive core–shell structure, invariably associated with carbonaceous material. These nanoparticles vary in size from ~20 nm up to 50 nm in diameter and consist of a core of Fe,Ni carbide surrounded by a continuous layer of polycrystalline magnetite. These magnetite shells are 5–7 nm in thickness irrespective of the diameter of the core Fe,Ni carbide grains. A narrow layer of amorphous carbon a few nanometers in thickness is present separating the carbide core from the magnetite shell in all the nanoparticles observed. The Fe,Ni carbide phases that constitute the core are consistent with both haxonite and cohenite, based on electron diffraction data, energy dispersive X‐ray analysis, and electron energy loss spectroscopy. Z‐contrast scanning transmission electron microscopy shows that these core–shell magnetite‐carbide nanoparticles can occur as individual isolated grains, but more commonly occur in clusters of multiple particles. In addition, energy‐filtered transmission electron microscopy (EFTEM) images show that in all cases, the nanoparticles are embedded within regions of carbonaceous material or are coated with carbonaceous material. The observed nanostructures of the carbides and their association with carbonaceous material can be interpreted as being indicative of Fischer–Tropsch‐type (FTT) reactions catalyzed by nanophase Fe,Ni metal grains that were carburized during the catalysis reaction. The most likely environment for these FTT reactions appears to be the solar nebula consistent with the high thermal stability of haxonite and cohenite, compared with other carbides and the evidence of localized catalytic graphitization of the carbonaceous material. However, the possibility that such reactions occurred within the CM parent body cannot be excluded, although this scenario seems unlikely, because the kinetics of the reaction would be extremely slow at the temperatures inferred for CM asteroidal parent bodies. In addition, carbides are unlikely to be stable under the oxidizing conditions of alteration experienced by CM chondrites. Instead, it is most probable that the magnetite rims on all the carbide particles are the product of parent body oxidation of Fe,Ni carbides, but this oxidation was incomplete, because of the buildup of an impermeable layer of amorphous carbon at the interface between the magnetite and the carbide phase that arrested the reaction before it went to completion. These observations suggest that although FTT catalysis reactions may not have been the major mechanism of organic material formation within the solar nebula, they nevertheless contributed to the inventory of complex insoluble organic matter that is present in carbonaceous chondrites.  相似文献   
2.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
3.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
4.
Active wildfire seasons in the western U.S. warrant the evaluation of post-fire forest management strategies. Ground-based salvage logging is often used to recover economic loss of burned timber. In unburned forests, ground-based logging often follows best management practices by leaving undisturbed areas near streams called stream buffers. However, the effectiveness of these buffers has not been tested in a post-wildfire setting. This experiment tested buffer width effectiveness with a novel field-simulated rill experiment using sediment-laden runoff (25 g/L) released over 40 min at evenly timed flow rates (50, 100 and 150 L/min) to measure surface runoff travel length and sediment concentration under unburned and high and low soil burn severity conditions at 2-, 10- and 22-month post-fire. High severity areas 2-month post-fire had rill lengths of up to 100 m. Rill length significantly decreased over time as vegetation regrowth provided ground cover. Sediment concentration and sediment dropout rate also varied significantly by soil burn severity. Sediment concentrations were 19 g/L for the highest flow 2-month post-fire and reduced to 6.9–14 g/L 10-month post-fire due to abundant vegetation recovery. The amount of sediment dropping out of the flow consistently increased over the study period with the low burn severity rate of 1.15 g L−1 m−1 approaching the unburned rate of 1.29 g L−1 m−1 by 2-year post-fire. These results suggest that an often-used standard, 15 m buffer, was sufficient to contain surface runoff and reduce sediment concentration on unburned sites, however buffers on high burn severity sites need to be eight times greater (120 m) immediately after wildfire and four times greater (60 m) 1-year post-fire. Low burn severity areas 1-year post-fire may need to be only twice the width of an unburned buffer (30 m), and 2-year post-fire these could return to unburned widths.  相似文献   
5.
Ocean Dynamics - One-dimensional models of exchange flows driven by horizontal density gradients are well known for performing poorly in situations with weak turbulent mixing. The main issue with...  相似文献   
6.

This paper focuses on the shrinkage behavior of soil specimens involving sand, kaolinite, and kaolinite/sand mixtures subjected to desiccation under controlled conditions. Both, free and restrained shrinkage conditions are studied. The experiments show that pure soils do not curl upon unrestrained shrinkage; however, (under the same conditions) kaolinite/sand mixtures exhibited a marked curling. Furthermore, the mixture with the higher sand content broke through the middle of the sample after displaying a significant curling. Soils subjected to restricted shrinkage developed cracks with slight curling. To simulate the observed behavior, a mechanical model able to reproduce the detachment of the soil sample from the mold is proposed in this work and implemented in a fully coupled hydro-mechanical finite-element code. It is concluded that suction and differential shrinkage are key factors influencing the curling behavior of soils. The proposed framework was able to satisfactorily explain and reproduce the different stages and features of soil behavior observed in the experiments.

  相似文献   
7.
Natural Resource Management (NRM) is often conducted as a partnership between government and citizens. In Australia, government agencies formulate policy and fund implementation that may be delivered on-ground by community groups (such as Landcare). Since the late 1980s, over AUS$8b of Commonwealth investment has been made in NRM. However, quantitative evidence of environmental improvements is lacking. The NRM Planning Portal has been developed to (1) provide an online spatial information system for sharing Landcare and agency data; and (2) to facilitate NRM priority setting at local and regional planning scales. While the project successfully federates Landcare NRM activity data, challenges included (1) unstructured, non-standardized data, meaning that quantitative reporting against strategic objectives is not currently possible, and (2) a lack of common understanding about the value proposition for adopting the portal approach. Demonstrating the benefit of technology adoption is a key lesson for digital NRM planning.  相似文献   
8.
River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels while others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan deltas, whose steep gradient (11°–25°) approaches the sediment's angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°–10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers. © 2018 John Wiley & Sons, Ltd.  相似文献   
9.
10.

Chile has a rich, but poorly known history of placer gold mining. At present, this sector is almost nonexistent and there are some restrictions for its revival: disperse and partial information on existing resources and limited technical expertise to assess the potential of placer gold mine sites. This paper presents the background, methodology and results of the prioritization process of known prospects of this kind in Chile. This research was part of a publicly funded project aimed to incentivize the development of this industry. The ranking was carried out using the analytic hierarchy process, which allowed to include different quantitative and qualitative variables related to the economic potential, technical aspects, contextual viability and socioeconomic factors in the analysis. The results show that, despite the increasing relevance of environmental and community issues in mining development, the business potential and the economic/technical aspects are the main factors in the early selection of a site to advance in exploration and development activities. Both variables represented around 40% and 37% of weights in the final selection, respectively. In contrast, contextual viability and local socioeconomic impacts only accounted for the remaining 23%. This study also shows that the inclusion of experts with different backgrounds in the process enriches the analysis and does not significantly distort the final outcome of the prioritization. Finally, the relevance of using MCDM tools when assessing the attractiveness of mine sites for their development is highlighted, particularly when public funds for subsequent exploration activities are committed.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号