首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   4篇
  2017年   2篇
  2015年   2篇
  2013年   2篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 250 毫秒
1
1.
It is generally found that the b values associated with reservoir-triggered seismicity (RTS) are higher than the regional b values in the frequency magnitude relation of earthquakes. In the present study, temporal and spatial variation of b value is investigated using a catalog of 3,000 earthquakes from August 2005 through December 2010 for the Koyna?CWarna region in Western India, which is a classical site of RTS globally. It is an isolated (30?×?20?km2) zone of seismicity where earthquakes of up to M ??5 are found to occur during phases of loading and unloading of the Koyna and Warna reservoirs situated 25?km apart. For the Warna region, it is found that low b values of 0.6?C0.9 are associated with earthquakes of M ??4 during the loading phase. The percentage correlation of the occurrence of an M????4 earthquake with a low b value outside the 1?? or 2?? level is as high as 78?%. A drastic drop in the b value of about 50?% being reported for an RTS site may be an important precursory parameter for short-term earthquake forecast in the future.  相似文献   
2.
New empirical relations are derived for source parameters of the Koyna–Warna reservoir-triggered seismic zone in Western India using spectral analysis of 38 local earthquakes in the magnitude range M L 3.5–5.2. The data come from a seismic network operated by the CSIR-National Geophysical Research Institute, India, during March 2005 to April 2012 in this region. The source parameters viz. seismic moment, source radius, corner frequency and stress drop for the various events lie in the range of 1013–1016 Nm, 0.1–0.4 km, 2.9–9.4 Hz and 3–26 MPa, respectively. Linear relationships are obtained among the seismic moment (M 0), local magnitude (M L), moment magnitude (M w), corner frequency (fc) and stress drop (?σ). The stress drops in the Koyna–Warna region are found to increase with magnitude as well as focal depths of earthquakes. Interestingly, accurate depths derived from moment tensor inversion of earthquake waveforms show a strong correlation with the stress drops, seemingly characteristic of the Koyna–Warna region.  相似文献   
3.
4.
This paper presents a hybrid model to better predict Indian summer monsoon rainfall. The algorithm considers suitable techniques for processing dense datasets. The proposed three-step algorithm comprises closed itemset generation-based association rule mining for feature selection, cluster membership for dimensionality reduction, and simple logistic function for prediction. The application of predicting rainfall into flood, excess, normal, deficit, and drought based on 36 predictors consisting of land and ocean variables is presented. Results show good accuracy in the considered study period of 37years (1969–2005).  相似文献   
5.
Earthquake activity is monitored in real time at the Koyna reservoir in western India, beginning from August 2005 and successful short term forecasts have been made of M ∼ 4 earthquakes. The basis of these forecasts is the observation of nucleation that precedes such earthquakes. Here we report that a total of 29 earthquakes in the magnitude range of 3.5 to 5.1 occurred in the region during the period of August 2005 through May 2010. These earthquakes could broadly be put in three zones. Zone-A has been most active accounting for 18 earthquakes, while 5 earthquakes in Zone-B and 6 in Zone-C have occurred. Earthquakes in Zone-A are preceded by well defined nucleation, while it is not the case with zones B and C. This indicates the complexity of the earthquakes processes and the fact that even in a small seismically active area of only 20 km × 30 km earthquake forecast is difficult.  相似文献   
6.
7.
On 10th December 1967, the world’s largest reservoir triggered seismic (RTS) event of magnitude 6.3 shook the Koyna region, the prime site of RTS globally. Ever since, several studies have attempted to infer the seismotectonics and to comprehend the actual causative mechanism of triggered seismicity in this region. Initial studies, including those of the 1967 Koyna main shock and its aftershocks, were based on the conventional P wave polarity or the first motion approach. These studies provided the first ever understanding of a predominantly strike-slip environment in the Koyna region, concurrent with the direction of ambient stress field due to the Indian plate motion. Subsequent studies pointed to a normal faulting environment in theWarna region further south, subsequent to impoundment later in 1985. A few studies did report solutions based on composite focal mechanisms, which however, only represent the average picture of the region. More recent studies based on modelling of seismic broadband waveform data provided more accurate focal mechanisms with unprecedented location accuracies including focal depths. A catalog of 50 focal mechanism solutions is now available for the earthquakes of magnitude ~4 and larger that occurred during the last 50 years, which has paved way for a clear understanding of the stress field and the causative model of seismogenesis in this active intra-plate seismic RTS zone in western India. Based on stress inversion using this catalog, a new tectonic model depicting a periodically varying stress field and hence faulting mechanism has been inferred.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号