首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   4篇
测绘学   11篇
大气科学   3篇
地球物理   40篇
地质学   42篇
海洋学   1篇
天文学   5篇
自然地理   8篇
  2022年   2篇
  2020年   3篇
  2019年   2篇
  2018年   10篇
  2017年   4篇
  2016年   4篇
  2015年   7篇
  2014年   3篇
  2013年   11篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有110条查询结果,搜索用时 281 毫秒
1.
Evaluation of maps generated from different conceptual models or data processing approaches at spatial level has importance in many geoenvironmental applications. This paper addresses the spatial comparison of different landslide susceptibility zonation (LSZ) raster maps of the same area derived from various procedures.  相似文献   
2.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   
3.
4.
The geomagnetic variation data from the 1979 Indian array experiment have been reanalyzed and reexamined using the hypothetical event analysis technique. The contour map of the |Z/H ratio replicates distinctive anomaly in northwest India previously delineated in maps of the Fourier coefficients. The anomaly reveals the presence of a significant conductor under the Ganga basin. The contour map has been used to derive a response profile perpendicular to the strike of the anomaly, for comparison with 2-D numerical models. An excellent fit was found for a conductor at a depth of 32 km, with a width of 110 km and a conductivity contrast of 1000. This result places the conductor deep within the lithosphere. In the absence of supporting data the origin of the conductor is difficult to resolve. However, it is thought to be related to pressure-released partial melting, caused by fracturing of the Indian crust during the collision of India with Asia.  相似文献   
5.
The paper presents the first results on the behaviour of solar quiet-day variations of the geomagnetic field components at Gulmarg. Combining the data from Russian stations in the same longitude belt, the annual average daily variations are calculated which show, in the horizontal component (H), a reversal of phase between Gulmarg and Tashkent. Studying the Sq-variations at Gulmarg separately for the three seasons, the daily variation of H duringd-months is predominantly diurnal in character with the maximum before noon. Duringe-months, and more so inj-months, daily variation of the H field is predominantly semidiurnal in character with minimum around 08–09 hr LT and maximum around 14 hr LT consistently during 1978, 1979 and 1980. These features of the Sq at Gulmarg are suggested to be due to the deformations of the current loops caused by the changing latitude of focus during the course of the day.  相似文献   
6.
—Magnetovariational fields recorded by an array of magnetometers in the equatorial region of north-northeast Brazil are analyzed to infer the configuration of internal induced currents in and around the extensive intracratonic Parnaíba basin. Only nighttime magnetovariational fields were used because of the prevailing uniform source field conditions. For periods exceeding 40 min. the vertical fields at all inland sites are dominated by the effects of electric currents originating in the northeast, in the deep Atlantic Ocean. Below this period, although best developed in the 12–15 min. period range, the anomalous signatures are principally controlled by two distinct continental current paths. The first is associated with a N60°E trending graben-like structure in the southeastern part of the basin (named the Parnaíba Basin Conductivity Anomaly—PBCA) and the second appears as a subsurface sedimentary channel, from the NW corner of the array to the central part of the basin. This is named the LINK anomaly, as it connects the northwestern Marajó basin with the Parnaíba basin. While the PBCA is shown to highlight the importance of basement tectonics in the geological evolution of the Parnaíba basin, the LINK anomaly provides strong geophysical evidence of the direction of the sea intrusion into the region of the basin and possibly indicates the connectivity of the Parnaíba basin to the adjoining Amazon basin through the Marajó basin. Frequency and polarization dependence suggest that the induction response of individual structures is not determined by the local conductivity alone but also by their interconnectivity as well as by their linkage to the continental shelf and deep oceanic region.  相似文献   
7.
Anisotropy of Magnetic Susceptibility (AMS) and seismic wave velocity studies of some paramagnetic Himalayan granitoids show good correlation between magnetic fabric anisotropy and P wave velocity (Vp). Vp shows strong positive correlation with magnetic lineation (L) and degree of magnetic anisotropy (P′) having correlation coefficient (r) values of 0.93 and 0.89 respectively. Both Vp and Vs show positive correlation with the SiO2 content of Proterozoic and Paleozoic granitoids. Velocity of S wave (Vs) shows negative correlation with mean magnetic susceptibility (Km) having ‘r’ value of 0.86. The correlation between Vs-Km, Vp-P′, Vp-L also shows >95% probability in Spearman’s rank correlation. Based on the results from the present sample size it is suggested that, in paramagnetic granites, Vp is proportional to intensity of deformation and preferred orientation of minerals as well as the mineralogy. On the other hand, Vs is more dependent on the mineralogy alone.  相似文献   
8.
Anisotropy of Magnetic Susceptibility (AMS) and seismic wave velocity studies of some paramagnetic Himalayan granitoids show good correlation between magnetic fabric anisotropy and P wave velocity (Vp). Vp shows strong positive correlation with magnetic lineation (L) and degree of magnetic anisotropy (P′) having correlation coefficient (r) values of 0.93 and 0.89 respectively. Both Vp and Vs show positive correlation with the SiO2 content of Proterozoic and Paleozoic granitoids. Velocity of S wave (Vs) shows negative correlation with mean magnetic susceptibility (Km) having ‘r’ value of 0.86. The correlation between Vs-Km, Vp-P′, Vp-L also shows >95% probability in Spearman’s rank correlation. Based on the results from the present sample size it is suggested that, in paramagnetic granites, Vp is proportional to intensity of deformation and preferred orientation of minerals as well as the mineralogy. On the other hand, Vs is more dependent on the mineralogy alone.  相似文献   
9.
The continuous increase in the emission of greenhouse gases has resulted in global warming, and substantial changes in the global climate are expected by the end of the current century. The reductions in mass, volume, area and length of glaciers on the global scale are considered as clear signals of a warmer climate. The increased rate of melting under a warmer climate has resulted in the retreating of glaciers. On the long‐term scale, greater melting of glaciers during the coming years could lead to the depletion of available water resources and influence water flows in rivers. It is also very likely that such changes have occurred in Himalayan glaciers, but might have gone unnoticed or not studied in detail. The water resources of the Himalayan region may also be highly vulnerable to such climate changes, because more than 50% of the water resources of India are located in the various tributaries of the Ganges, Indus and the Brahmaputra river system, which are highly dependent on snow and glacier runoff. In the present study, the snowmelt model SNOWMOD has been used to simulate the melt runoff from a highly glacierized small basin for the summer season. The model simulated the distribution and volume of runoff with reasonably good accuracy. Based on a 2‐year simulation, it is found that, on average, the contributions of glacier melt and rainfall in the total runoff are 87% and 13% respectively. The impact of climate change on the monthly distribution of runoff and total summer runoff has been studied with respect to plausible scenarios of temperature and rainfall, both individually and in combined scenarios. The analysis included six temperature scenarios ranging between 0·5 and 3 °C, and four rainfall scenarios (?10%, ?5%, 5%, 10%). The combined scenarios were generated using temperature and rainfall scenarios. The combined scenarios represented a combination of warmer and drier and a combination of warmer and wetter conditions in the study area. The results indicate that, for the study basin, runoff increased linearly with increase in temperature and rainfall. For a temperature rise of 2 °C, the increase in summer streamflow is computed to be about 28%. Changes in rainfall by ±10% resulted in corresponding changes in streamflow by ±3·5%. For the range of climatic scenarios considered, the changes in runoff are more sensitive to changes in temperature, compared with rainfall, which is likely due to the major contribution of melt water in runoff. Such studies are needed for proper assessment of available water resources under a changing climate in the Himalayan region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号