首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   32篇
  国内免费   6篇
测绘学   35篇
大气科学   65篇
地球物理   162篇
地质学   239篇
海洋学   61篇
天文学   180篇
自然地理   75篇
  2020年   10篇
  2019年   10篇
  2018年   6篇
  2017年   22篇
  2016年   18篇
  2015年   25篇
  2014年   17篇
  2013年   23篇
  2012年   15篇
  2011年   38篇
  2010年   22篇
  2009年   40篇
  2008年   36篇
  2007年   27篇
  2006年   28篇
  2005年   15篇
  2004年   18篇
  2003年   12篇
  2002年   33篇
  2001年   18篇
  2000年   20篇
  1999年   17篇
  1998年   13篇
  1997年   17篇
  1996年   9篇
  1995年   14篇
  1994年   7篇
  1993年   6篇
  1992年   8篇
  1990年   7篇
  1989年   7篇
  1988年   12篇
  1987年   7篇
  1986年   10篇
  1985年   13篇
  1984年   18篇
  1983年   8篇
  1982年   23篇
  1981年   11篇
  1980年   14篇
  1979年   19篇
  1978年   17篇
  1977年   14篇
  1976年   9篇
  1975年   15篇
  1974年   14篇
  1973年   9篇
  1972年   6篇
  1971年   5篇
  1966年   4篇
排序方式: 共有817条查询结果,搜索用时 171 毫秒
1.
ABSTRACT

Since the 1990s, climate change impact discourse has highlighted potential for large scale violent conflicts. However, the role of climate stresses on local conflicts over natural resources, the role of policies and adaptation in these conflicts, and opportunities to enhance cooperation have been neglected. These gaps are addressed in this paper using evidence from participatory action research on 79 cases of local collective action over natural resources that experience conflicts in Bangladesh and Nepal. Climate trends and stresses contributed to just under half of these conflict cases. Nine factors that enable greater cooperation and transformation of conflict are identified. Participatory dialogue and negotiation processes, while not sufficient, changed understanding, attitudes and positions of actors. Many of the communities innovated physical measures to overcome natural resource constraints, underlying conflict, and/or institutional reforms. These changes were informed by improving understanding of resource limitations and indigenous knowledge. Learning networks among community organizations encouraged collective action by sharing successes and creating peer pressure. Incentives for cooperation were important. For example, when community organizations formally permitted excluded traditional resource users to access resources, those actors complied with rules and paid towards management costs. However, elites were able to use policy gaps to capture resources with changed characteristics due to climate change. In most of the cases where conflict persisted, power, policy and institutional barriers prevented community-based organizations from taking up potential adaptations and innovations. Policy frameworks recognizing collective action and supporting flexible innovation in governance and adaptation would enable wider transformation of natural resource conflicts into cooperation.

Key policy insights
  • Climate stresses, policy gaps and interventions can all worsen local natural resource conflicts.

  • Sectoral knowledge and technical approaches to adaptation are open to elite capture and can foster conflicts.

  • Many local natural resource conflicts can be resolved but this requires an enabling environment for participatory dialogue, external facilitation, flexible responses to context, and recognition of disadvantaged stakeholder interests.

  • Transforming conflict to greater cooperation mostly involves social and institutional changes, so adaptation policies should focus less on physical works and more on enabling factors such as negotiation, local institutions, knowledge, and incentives.

  相似文献   
2.
3.
4.
5.
This study focuses on the comparison of oceanic and coastal cold-core eddies with inner-shelf and East Australian Current (EAC) waters at the time of the spring bloom (October 2008). The surface water was biologically characterised by the phytoplankton biomass, composition, photo-physiology, carbon fixation and by nutrient-enrichment experiments. Marked differences in phytoplankton biomass and composition were observed. Contrasted biomarker composition suggests that biomarkers could be used to track water masses in this area. Divinyl chlorophyll a, a biomarker for tropical Prochlorophytes, was found only in the EAC. Zeaxanthin a biomarker for Cyanophytes, was found only within the oceanic eddy and in the EAC, whereas chlorophyll b (Chlorophytes) was only present in the coastal eddy and at the front between the inner-shelf and EAC waters.This study showed that cold-core eddies can affect phytoplankton, biomass, biodiversity and productivity. Inside the oceanic eddy, greater phytoplankton biomass and a more complex phytoplankton community were observed relative to adjacent water masses (including the EAC). In fact, phytoplankton communities inside the oceanic eddy more closely resembled the community observed in the inner-shelf waters. At a light level close to half-saturation, phytoplankton carbon fixation (gC d−1) in the oceanic eddy was 13-times greater than at the frontal zone between the eddy and the EAC and 3-times greater than in the inner-shelf water. Nutrient-enrichment experiments demonstrated that nitrogen was the major macronutrient limiting phytoplankton growth in water masses associated with the oceanic eddy. Although the effective quantum yield values demonstrate healthy phytoplankton communities, the phytoplankton community bloomed and shifted in response to nitrogen enrichments inside the oceanic eddy and in the frontal zone between this eddy and the EAC. An effect of Si enrichment was only observed at the frontal zone between the eddy and the EAC. No response to nutrient enrichment was observed in the inner-shelf water where ambient NOx, Si and PO4 concentrations were up to 14, 4 and 3-times greater than in the EAC and oceanic eddy. Although results from the nutrient-enrichment experiments suggest that nutrients can affect biomass and the composition of the phytoplankton community, the comparison of all sites sampled showed no direct relationship between phytoplankton biomass, nutrients and the depth of the mixed layer. This is probably due to the different timeframe between the rapidly changing physical and chemical oceanography in the separation zone of the EAC.  相似文献   
6.
The composition and dynamics of the phytoplankton communities and hydrographic factors that control them are described for eastern and western Australia with a focus on the Eastern Australian Current (EAC) and Leeuwin Current (LC) between 27.5° and 34.5°S latitude. A total of 1685 samples collected from 1996 to 2010 and analysed for pigments by high performance liquid chromatography (HPLC) showed the average TChla (monovinyl+divinyl chlorophyll a) concentration on the west coast to be 0.28±0.16 ??g L−1 while it was 0.58±1.4 ??g L−1 on the east coast. Both coasts showed significant decreases in the proportions of picoplankton and relatively more nanoplankton and microplankton with increasing latitude. On both coasts the phytoplankton biomass (by SeaWiFS) increased with the onset of winter. At higher latitudes (>27.5°S) the southeast coast developed a spring bloom (September) when the mean monthly, surface chlorophyll a (chla) concentration (by SeaWiFS) was 48% greater than on the south west coast. In this southern region (27.5-34.5°S) Synechococcus was the dominant taxon with 60% of the total biomass in the southeast (SE) and 43% in the southwest (SW). Both the SE and SW regions had similar proportions of haptophytes; ∼14% of the phytoplankton community. The SW coast had relatively more pelagophytes, prasinophytes, cryptophytes, chlorophytes and less bacillariophytes and dinophytes. These differences in phytoplankton biomass and community composition reflect the differences in seasonality of the 2 major boundary currents, the influence this has on the vertical stability of the water column and the average availability of nutrients in the euphotic zone. Seasonal variation in mixed layer depth and upwelling on the west coast appears to be suppressed by the Leeuwin Current. The long-term depth averaged (0-100 m) nitrate concentration on the west coast was only 14% of the average concentration on the east coast. Redfield ratios for NO3:SiO2:PO4 were 6.5:11.9:1 on the east coast and 2.2:16.2:1 on the west coast. Thus new production (nitrate based) on the west coast was likely to be substantially more limited than on the eastcoast. Short term (hourly) rates of vertical mixing were greater on the east coast. The more stable water column on the west coast produced deeper subsurface chlorophyll a maxima with a 25% greater proportion of picoeukaryotes.  相似文献   
7.
8.
Assigned values derived from the GeoPT proficiency testing programme were compared with certified values for six certified reference materials that have been used as test materials in the GeoPT programme. Statistical analysis showed that there were few significant differences between these sets of data and that these differences had no significant impact on the GeoPT assessment when fitness‐for‐purpose criteria were taken into account.  相似文献   
9.
Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/−20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP (Mytilus edulis) and 12,800 ± 55 14C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.  相似文献   
10.
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980?C2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50?C80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号