首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   0篇
地球物理   103篇
  2021年   1篇
  2018年   1篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
2.
Publication and citation rates of female engineering faculty (FEF) who work in earthquake engineering are analyzed and compared with a group of leading male engineering faculty (MEF) in the same field. After correcting for the effects of rank and gender, it is found that the future performance of FEF, given the opportunity, can rank as high as the recognized leaders in the field.  相似文献   
3.
4.
This paper discusses surface displacements, surface strain, rocking, and energy partitioning during reflection-of-plane waves in a fluid-saturated poroelastic half-space. The medium is modeled by Biot's theory, and is assumed to be saturated with inviscid fluid. A linear porosity-modulus relation based on experimental data on sandstones is used to determine the material parameters for Biot's model. Numerical results in terms of angle of incident waves and Poisson's ratio are illustrated for various porosities and degrees of solid frame stiffness. The results show that the amount of solid frame stiffness controls the response of a fluid-saturated porous system. A poroelastic medium with essentially dry-frame stiffness behaves like an elastic medium, and the influence of pore fluid increases as dry-frame stiffness is reduced. The effects of a second P-wave become noticeable in poroelastic media with low dry-frame stiffness.  相似文献   
5.
The spatial distributions of severely damaged buildings (red-tagged) and of breaks in the water distribution system following the 1994 Northridge, California, earthquake (ML = 6·4) are investigated relative to the local characteristics of surficial geology. The pipe breaks are used as an indicator of nonlinear soil response, and the red-tagged buildings as indicator of severe shaking. The surficial geology is described by several generalized categories based on age, textural character and thickness of the near surface layer. Two regions are studied: the San Fernando Valley and Los Angeles-Santa Monica. The analysis shows that there is no simple correlation between damage patterns and surficial geology. Single family wood-frame buildings were damaged less when built on fine silt and clay (0–3 m thick) from the late Holocene.  相似文献   
6.
The period and amplitude variations of local peaks in the Fourier amplitude spectra of free-field strong ground motion recorded at five stations in San Fernando Valley of metropolitan Los Angeles, California, are described, searching for peaks that reoccur during different earthquakes. The data suggest that some local peaks reoccur (about 50% of the time), during shaking by small local earthquakes (peak ground velocities, vmax<10–20 cm/s). During large strong motion amplitudes (vmax>20 cm/s), these peaks are shifted towards longer periods (by nonlinear response of soils) or disappear. The data also suggest that densification and settlement of soil, minutes and hours following the strong shaking may contribute towards fluctuations in the effective stiffness of the shallow surface layers.  相似文献   
7.
This article explores the possibility to measure deformations of building foundations from measurements of ambient noise and strong motion recordings. The case under study is a seven-storey hotel building in Van Nuys, California. It has been instrumented by strong motion accelerographs, and has recorded several earthquakes, including the 1971 San Fernando (ML=6.6, R=22 km), 1987 Whittier–Narrows (ML=5.9, R=41 km), 1992 Landers (ML=7.5, R=186 km), 1992 Big Bear (ML=6.5, R=149 km), and 1994 Northridge (ML=6.4, R=1.5 km) earthquake and its aftershocks (20 March: ML=5.2, R=1.2 km; 6 December, 1994: ML=4.3, R=11 km). It suffered minor structural damage in 1971 earthquake and extensive damage in 1994. Two detailed ambient vibration tests were performed following the Northridge earthquake, one before and the other one after the 20 March aftershock. These included measurements at a grid of points on the ground floor and in the parking lot surrounding the building, presented and analyzed in this article. The analysis shows that the foundation system, consisting of grade beams on friction piles, does not act as a “rigid body” but deforms during the passage of microtremor and therefore earthquake waves. For this geometrically and by design essentially symmetric building, the center of stiffness of the foundation system appears to have large eccentricity (this is seen both from the microtremor measurements and from the earthquake recordings). This eccentricity may have contributed to strong coupling of transverse and torsional responses, and to larger than expected torsional response, contributing to damage during the 1994 Northridge, earthquake.  相似文献   
8.
Transient pressures generated by earthquake shaking in hydrotechnical tunnels are evaluated by the discrete Fourier transform technique. The effects of the horizontal ground motion accelerating the closed downstream tunnel gate, as well as the upstream dam face, and the influence of the vertical motion of the reservoir floor are considered in this analysis. An example of a typical bottom outlet is analysed by subjecting it to several computed accelerograms. It is shown that high hydrodynamic pressures can be developed, several times larger than the hydrostatic pressure.  相似文献   
9.
This paper analyses the processes which govern structural response, and uses observations of strong earthquake ground motion to propose quantitative extrapolation of pseudo relative velocity spectral amplitudes to long (100 > T > 1 s) periods. This will eliminate the current difficulties with rough estimation of long period spectral amplitudes and will open new possibilities by enabling the strong motion hazard calculations to be extended to the same long period band. So far, the scaling equations of response spectrum amplitudes have been valid only up to periods less than several seconds. The design of long structures and of structures on multiple distant supports requires knowledge and specification of design ground motions well beyond 1–10 s periods. With the results presented in this paper it will be possible to compute site-specific uniform hazard spectra and associated synthetic accelograms for essentially all long period response problems.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号