首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  国内免费   26篇
  收费全文   11篇
  完全免费   27篇
  地质学   64篇
  2019年   3篇
  2018年   1篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   6篇
  2009年   8篇
  2008年   13篇
  2007年   1篇
  2006年   11篇
  2005年   3篇
  2003年   2篇
  2002年   3篇
  2000年   1篇
  1998年   3篇
排序方式: 共有64条查询结果,搜索用时 31 毫秒
1.
青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用   总被引:89,自引:31,他引:58       下载免费PDF全文
许多古老造山带的碰撞造山过程,因从晚碰撞向后碰撞的转换,既不清楚,又难以界定,常被分为碰撞和后碰撞2个阶段。文章对青藏高原碰撞造山过程进行了分析,发现其具有明显的3段性,由此将碰撞造山过程分为主碰撞(65~41Ma)、晚碰撞(40~26Ma)和后碰撞(25~0Ma)3个阶段。其中,晚碰撞造山作用发生于印度与亚洲大陆的持续汇聚和SN向挤压背景之下,以陆内俯冲、大规模逆冲推覆、走滑断裂系统的发育为特征,导致了区域尺度的地壳缩短及藏东富碱斑岩和碳酸岩_正长岩、藏北钾质_超钾质火山岩的大规模产出。晚碰撞期成矿作用强烈发育,主要集中于高原东缘的构造转换带,成矿高峰期集中于(35±5)Ma。现已识别出4个重要的成矿事件:①与大规模走滑断裂系统有关的斑岩型Cu_Mo(Au)成矿事件,形成著名的玉龙斑岩铜矿带(40~36Ma);②与碳酸岩_正长岩杂岩有关的REE成矿事件,在二叠纪攀西古裂谷带内发育勉宁—德昌喜马拉雅期REE成矿带(41~27Ma);③与逆冲推覆构造系统有关的热卤水型Pb_Zn_Ag_Cu成矿事件,集中产出于兰坪盆地,形成大型Pb_Zn_Ag矿集区(40~30Ma);④与大规模剪切系统有关的剪切带型Au成矿事件,形成著名的哀牢山大型Au矿带(63~28Ma)。晚碰撞成矿作用主要发育于陆内转换造山环境,受大规模走滑_推覆_剪切作用控制,受控于统一的深部作用过程,与软流圈上涌导致的幔源或壳/幔混源岩浆活动密切相关。在综合研究基础上,初步建立了晚碰撞转换成矿模型。  相似文献
2.
青藏高原碰撞造山带:Ⅲ. 后碰撞伸展成矿作用   总被引:82,自引:20,他引:62       下载免费PDF全文
“后碰撞”作为大陆碰撞造山作用的特定过程,以其重要的构造演化标示性特征和强烈的爆发式金属成矿作用,受到人们的高度重视。但涉及后碰撞的一系列重要地质问题,如后碰撞期的构造特征与演化历程、岩浆发育序列和岩石构造组合、伸展成矿作用与矿床系列组合等,尚未得到清楚完好的识别、理解和阐示。文章系统研究和总结了青藏高原后碰撞造山与成矿作用特征,提出了后碰撞伸展成矿作用的构造控制模型。研究表明,现今处于后碰撞阶段的青藏高原,中新世以来主要经历了两阶段发育历史。后碰撞早期阶段主要发生下地壳流动与上地壳缩短(>18Ma):下地壳塑性流动并向南挤出,在藏南地区形成EW向延伸的藏南拆离系(STD)和高喜马拉雅,上地壳强烈逆冲推覆,在拉萨地体发育EW向展布的逆冲断裂系;晚期阶段主要发生地壳伸展与裂陷(<18Ma):垂直碰撞带的EW向伸展,形成一系列横切青藏高原的NS向正断层系统(≤13·5Ma)及其围陷的裂谷系和裂陷盆地。后碰撞岩浆作用以形成钾质_超钾质火山岩、钾质埃达克岩、钾质钙碱性花岗岩与淡色花岗岩为特征,集中发育于冈底斯构造_岩浆带和藏南特提斯喜马拉雅。淡色花岗岩与藏南拆离构造有关,其他钾质_超钾质岩浆活动则与EW向地壳伸展有关。青藏高原后碰撞成矿作用强烈而复杂,主要形成斑岩型Cu矿、热液脉型Sb_Au矿、矽卡岩型和热液脉型Ag_Pb_Zn矿以及现代热泉型Cs_Au矿等重要矿床类型。斑岩型Cu矿及矽卡岩型多金属矿床形成于后碰撞伸展环境,岩浆起源于加厚的镁铁质新生下地壳;热液脉型Sb_Au矿发育于藏南拆离带及变质核杂岩周围,系中新世地热田浅成低温热液活动产物。热液脉型Ag_Pb_Zn矿主要产于拉萨地体内部的逆冲构造带内,与地壳流体的迁移汇聚过程有关。青藏高原后碰撞成矿作用在上地壳层次受3大构造系统控制,即①东西向伸展形成的近NS向正断层系统及裂谷裂陷带,②南北向地壳缩短形成的EW向展布的逆冲构造带和③EW向展布的拆离构造带,但在中下地壳/地幔层次上,则受中下地壳物质流动_挤出过程以及俯冲大陆板片断离_拆沉过程控制。  相似文献
3.
大陆成矿作用是当代区域成矿学研究的重大前沿,增进对大陆碰撞造山带成矿作用的理解和认识是孕育和建立大陆成矿理论框架的核心和关键。长期以来,由于对系统完整地记录大陆碰撞过程的典型造山带的成矿作用缺乏深入系统的研究,对碰撞造山过程及壳/幔相互作用与成矿作用的耦合关系和成因联系缺乏深刻的理解,导致了对碰撞成矿阶段以及各阶段动力学过程认识不清,引发了较多争议。青藏高原造山带,成矿规模大、形成时代新、矿床类型多、保存条件好,为系统地研究大陆成矿作用、解决上述存在的问题提供了天然实验室。“印度-亚洲主碰撞带成矿作用”973项目组通过对青藏高原碰撞造山带成矿作用历时3年的系统研究,建立了青藏高原重要成矿事件的时空坐标,初步建立了成矿作用的地球动力学模型或构造控制模型,提出了一套完整的大陆碰撞带成矿理论新框架,包括三大成矿作用和12种矿床类型:同碰撞造山成矿作用(65-41 Ma,4种矿床类型),晚碰撞转换成矿作用 (40-26Ma,4种矿床类型),后碰撞伸展成矿作用(25-0 Ma,4种矿床类型)。其主控因素分别为:碰撞造山背景、壳源岩浆活动和大规模剪切变形;陆内转换背景、幔源岩浆活动和大规模走滑-推覆-剪切作用;后碰撞伸展环境、壳/幔岩浆作用和热液对流系统。  相似文献
4.
青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用   总被引:72,自引:20,他引:52  
大陆碰撞与成矿作用是当代成矿学研究的重要前沿。与板块构造成矿作用研究相比,大陆碰撞造山带的成矿作用研究则明显薄弱。文章以青藏高原主碰撞带为对象,研究了印度-亚洲大陆主碰撞过程与区域成矿作用的耦合关系,并初步建立了主碰撞造山成矿模型。研究表明,印度-亚洲大陆主碰撞始于65Ma,延续至41Ma,形成了以藏南前陆冲断带、冈底斯主碰撞构造-岩浆带和藏北陆内褶皱-逆冲带为特征的青藏高原碰撞造山带主体。伴随陆-陆碰撞,在冈底斯带相继发育①壳源白云母花岗岩-钾质钙碱性花岗岩组合(66-50Ma)、②+εNd花岗岩-辉长岩组合(52-47Ma)和③幔源玄武质次火山岩-辉绿岩脉组合(42Ma),以及大面积分布的巨厚(5000m)的林子宗火山岩系(65-43Ma),反映深部相继发生大陆碰撞和板片陡深俯冲(65-52Ma)→板片断离(52-42Ma)→板片低角度俯冲(〈40Ma)等重要过程。在主碰撞期,初步识别出4个重要的成矿事件:①与壳源花岗岩有关的Sn、稀有金属成矿事件,在藏东滇西形成腾冲Sn、稀有金属矿集区;②与壳/幔花岗岩有关的Cu-AuMo成矿事件,在冈底斯南缘形成长达百余公里的Cu-Au矿化带;③与碰撞造山有关的剪切带型Au成矿事件,沿雅鲁藏布江缝合带分布,形成具有较大成矿潜力的A-u矿化带;④与挤压抬升有关的Cu-Au成矿事件,形成以雄村大型铜金矿为代表的斑岩型/浅成低温复合型Cu-Au矿床。在综合研究基础上,初步建立了大陆主碰撞造山区域成矿模型。  相似文献
5.
青藏高原碰撞造山带不仅呈现南北不均一性,而且显示东西分段性。以横贯高原腹地的NNE向负磁异常带为界,将冈底斯分为三段。在宽约300km的负磁异常带为代表的中段,近SN向的裂谷和正断层系统、重要地震和现代热水活动、古新世林子宗火山岩系和中新世超钾质火山岩系、以及日喀则弧前盆地集中发育,伴有斑岩型Cu-Mo和成因独特的Au-Cu矿化;在85°E以西的西段,主要发育强烈逆冲推覆系、同碰撞期花岗岩和中新世钾质-超钾质火山岩系,伴有造山型Au矿化;而在90°E以东的东段,主要发育走滑断裂系、同碰撞期花岗岩和中新世埃达克质斑岩,伴有斑岩型Cu-Mo矿化。古新世林子宗火山岩的精细定年和地球化学特征揭示,印度大陆板片向北的俯冲-汇聚至少在50Ma前没有表现出明显的时间差异性。然而,中新世钾质-超钾质岩和大规模花岗岩基的时空分布和地球化学特征反映,印度大陆板片前缘可能发生撕裂,并发生分段式差异俯冲,西段(85°E以西)俯冲规模大,距离远,东段(90°E以东)俯冲规模小,可能未跨过雅江缝合带。沿着负磁异常带两侧的边界裂谷带,高SiO_2煌斑岩和念青唐古拉花岗岩基及相伴钾质火山岩的发育,揭示来源于软流圈地幔的岩浆和高热流穿过板片撕裂带并沿耦合上覆的裂谷带上涌,前者侵位和喷发,后者诱发地壳熔融。90°E与85°E之间的俯冲板片可能由于撕裂、断离和破碎,因而导致斜跨高原腹地的大面积通道式负磁异常带。  相似文献
6.
侯增谦  杨志明 《地质学报》2009,83(12):1779-1817
中国大陆环境斑岩型矿床包括斑岩型Cu(-Mo、-Au)、斑岩型Mo、斑岩型Au和斑岩型Pb-Zn等矿床类型,主要产出于青藏高原大陆碰撞带、东秦岭大陆碰撞带和中国东中部燕山期陆内环境,在地球动力学背景、深部作用过程、岩浆起源演化、流体与金属来源等方面与岩浆弧环境斑岩型矿床存在重要差异.在大洋板块俯冲形成的岩浆弧,主要发育斑岩Cu-Au矿床或富金斑岩Cu矿(岛弧)和斑岩Cu-Mo及斑岩Mo矿床(陆缘弧).相比,在大陆碰撞带,晚碰撞构造转换环境发育斑岩Cu、Cu-Mo和Cu-Au矿床,矿床受斜交碰撞带的走滑断裂系统控制,后碰撞地壳伸展环境则主要发育斑岩Cu-Mo矿床,矿床受垂直于碰撞带的正断层系统控制;在陆内造山环境,早期发育斑岩Cu-Au矿床,晚期发育斑岩Pb-Zn矿床,它们主要沿古老的但再活化的岩石圈不连续带分布,受网格状断裂系统控制;在后造山(或非造山)伸展环境,则大量发育斑岩Mo矿和斑岩Au矿,它们则主要围绕大陆基底-克拉通(或地块)边缘分布,受再活化的岩石圈不连续带控制.大陆环境斑岩Cu(-Mo,-Au)矿床的含矿斑岩多为高钾钙碱性和钾玄质,以高钾为特征,显示埃达克岩地球化学特性.岩浆通常起源于加厚的新生镁铁质下地壳或拆沉的古老下地壳.上地幔通过三种可能的方式向岩浆系统供给金属Cu(和Au):①提供大批量的幔源岩浆并底垫于加厚下地壳底部,构成含Cu岩浆的源岩;②提供小批量的软流圈熔体交代和改造下地壳,并诱发其熔融;③与拆沉的下地壳岩浆熔体发生反应.大陆环境含Mo岩浆系统高SiO_2、高K_2O,岩相以花岗斑岩为主,花岗闪长斑岩次之,既不同于Climax型,又有别于石英二长斑岩型Mo矿床,岩浆起源于古老的下地壳.金属Mo主要为就地熔出,部分萃取于上部地壳.大陆环境含Pb-Zn花岗斑岩多属铝过饱和型,与S型花岗岩相当,以高δ~(18)O(>10‰)和高放射性Pb为特征,Sr-Nd-Pb同位素组成反映其来源于中下地壳的深熔作用,金属Pb-Zn主要来源于深融的壳层.大陆环境含Au岩浆系统以富B花岗闪长斑岩为主,常与矿前闪长岩密切共生.Sr-Nd-Pb同位素显示,含Au岩浆主要来源于上部地壳,但曾与幔源岩浆发生相互作用.金属Au部分来源于上地壳,部分来源于地幔岩浆.大陆环境斑岩型矿床显示各具特色的蚀变类型和蚀变分带,其中,斑岩型Cu(-Mo,-Au)矿热液蚀变遵循Lowell and Guilbert模式;斑岩型Mo矿主要发育钙硅酸盐化、钾硅酸盐化和石英-绢云母化;斑岩型Pb-Zn矿主要发育绿泥石-绢云母化和绢云母-碳酸盐化,缺乏钾硅酸盐化;斑岩型Au矿强烈发育中度泥化.斑岩型矿床的成矿流体初始为高温、高fO_2、高S、富金属的岩浆水,由浅成侵位的长英质岩浆房在应力松弛环境下出溶而来,晚期有天水不同程度地混入.Cu、Mo、Pb-Zn通常沉淀于流体分相和流体沸腾过程中,而Au则主要沉淀于岩浆-热液过渡阶段.  相似文献
7.
西藏冈底斯斑岩铜矿带厅宫铜矿床流体包裹体研究   总被引:25,自引:9,他引:16       下载免费PDF全文
厅宫斑岩铜矿床是西藏冈底斯斑岩铜矿带上重要的矿床之一。为了探明该矿床成矿流体的成分及温压条件等物理化学性质,文章对厅宫铜矿各蚀变阶段石英脉及石英斑晶中的流体包裹体进行了显微测温、四极杆质谱、离子色谱和激光拉曼探针分析,结果表明:厅宫铜矿成矿流体为高温、高盐度岩浆热液,成矿事件主要发生在340~380℃,成矿过程中流体发生了沸腾;成矿流体中气相成分以H2O为主,还含有一定量的CO2及少量的CH4、H2S、C2H6等气体;液相中离子以K^+、Na^+、Cl^-、SO4^2-、F^-等为主,还含有少量的Ca^2+、Mg^2+等;另外,出现大量气泡先消失、子矿物后熔融的Ⅲa类包裹体,表明有些成矿流体可能直接来源于深部岩浆的出溶作用。  相似文献
8.
地处青藏高原东、北缘的兰坪、玉树及沱沱河地区,广泛发育包括金顶超大型矿床在内的大量新生代Pb、Zn、Cu多金属矿床.这些矿床均产于该高原东缘晚碰撞构造转换环境,主体赋存于第三纪前陆盆地内部,以沉积岩容矿,与岩浆活动无关,受逆冲推覆构造系统控制,显著区别于世界已知的各类以沉积岩容矿的贱金属矿床.研究表明,伴随印度.亚洲大陆碰撞造山而产生一系列逆冲断裂系,将前陆盆地侧缘的中生代地层切割成叠置的构造岩片,并推覆叠置于盆地沉积地层之上,形成单冲式或对冲式逆冲推覆构造系统,并控制了Pb-Zn-Ag-C矿床的形成与发育.根据逆冲推覆构造控矿式样和矿化特征,可以识别出4种矿床式:①产于逆冲推覆构造系统前锋带"构造穹隆 岩性圈闭"内的金顶式Zn-Pb矿床;②受控于前锋带冲起构造的河西.三山式Pb-Zn-Ag-Cu矿床;③产于主逆冲断裂带派生的次级断层或平移断层内的富隆厂式Ag-Cu或Cu矿床;④产于主逆冲断裂上盘灰岩层间破碎带内的东莫扎抓式Pb-Zn矿床.这些矿床的矿体多受不同级次的断裂控制,多孔砂岩、白云岩化灰岩及构造破碎带是有利矿化部位.多数矿体显示开放空间充填成矿特点,少数显示层控性,属后生成矿.金属矿物组合主要为低Fe闪锌矿 方铅矿 黄铁矿组合及低温Cu硫化物(黝铜矿系列为主) Ag硫化物(辉银矿、黝银矿、汞银矿) 方铅矿±闪锌矿组合,脉石矿物组合主要为方解石±重晶石±萤石±白云石±天青石,局部见沥青.成矿流体以盐水体系为主,盐度w(NaCleq)变化于1%~28.0%之间,成矿温度较低,通常在80~190 ℃,显示盆地卤水±大气降水的特点.逆冲推覆构造系统对矿床的控制主要体现在:其深部拆离滑脱带可能是流体流长距离侧向迁移的优选通道,主逆冲断裂是成矿流体垂向运移和向上排泄的主要途径,浅部各类样式的逆冲构造是流体汇聚的主要场所.成矿物质以盆地沉积岩贡献为主,部分可能来自幔源岩石.矿床金属组合可能与成矿流体迁移-汇聚过程中流经岩石的性质有关:矿区发育灰岩建造时,出现Zn-Pb(Zn多于Pb)矿化;若发育碎屑岩建造,尤其是红层,则出现Cu-Ag(-Pb)矿化.因此,笔者将这种逆冲推覆构造控制的新类型矿床称之为造山型Pb-Zn-Ag-Cu矿床,其成矿模式可表述为:伴随着印度-亚洲大陆持续碰撞,青藏高原东、北缘中生代构造岩片向盆地中央推覆并置,形成单冲式或对冲式逆冲推覆构造系统,流体从造山带沿拆离滑脱带长距离向前陆盆地方向运移,运移过程中淋滤围岩的金属物质,通过主逆冲断裂垂向沟通,进入浅部各式逆冲构造部位从而形成不同样式的矿床.经综合分析,提出了青藏高原东、北缘受逆冲推覆构造控制的贱金属矿床的勘查要素.  相似文献
9.
驱龙铜矿是西藏冈底斯斑岩铜矿带东段典型的斑岩型铜矿床.流体包裹体研究显示,与成矿有关的包裹体主要分为液相包裹体、气相包裹体和含子矿物多相包裹体3类,它们的均一温度为190℃~510℃;盐度为0.5~52.5 wt%NaCleq.激光拉曼显微探针(LRM)分析表明,各类包裹体中气、液相成分以H2O为主.含子矿物多相包裹体与不同气相充填度的液相包裹体、气相包裹体共存,且均一温度相近,但盐度相差很大,表明成矿流体经历了沸腾作用.从蚀变矿物组合、流体包裹体显微测温分析及LRM分析可以看出,驱龙斑岩铜矿床成矿流体富含Cl-、SO2-4、Na 、K 、Ca2 、CO2-3,具有较高盐度和较强的Cu溶解能力.  相似文献
10.
为了揭示青藏高原的形成演化及其隆升历史,本文主要立足于西藏冈底斯带新生代岩浆岩,研究了印度—亚洲大陆碰撞早期阶段的关键岩石记录、详细碰撞过程和深部动力机制。西藏新生代火山-岩浆活动贯穿于主碰撞造山过程的始终,形成规模巨大的冈底斯火成岩浆岩带,其中,火山活动形成著名的林子宗第三纪火山岩系(64~43Ma),岩浆作用则形成3个时间连续、但组合不同的岩浆序列,即:1壳源花岗岩组合(65~50Ma)、2正εNd花岗岩-辉长岩组合(52~47Ma)和3幔源玄武质次火山岩-辉绿岩组合(53~42Ma)。林子宗第三纪火山岩系形成于印度—亚洲大陆对接碰撞之后(~65Ma),不整合覆盖于中生代褶皱构造层之上,中下部钙碱性—高钾钙碱性火山岩显示岛弧/陆缘弧地球化学特征,主要来自于洋壳板片流体交代的地幔楔形区,上部钾玄岩系火山岩则更多地显示壳源特征。壳源花岗岩主要侵位于冈底斯东段腾冲地区,成因类型为白云母过铝花岗岩和富钾钙碱性花岗岩,其高(87Sr/86Sr)i(>0.710)和低εNd(<-7)同位素组成反映其源于碰撞加厚的砂泥质地壳的深熔作用。正εNd值(+2~+5)花岗岩和辉长岩沿冈底斯带成对侵位,花岗岩具有埃达克岩与弧花岗岩过渡特征,其形成有较多的幔源物质贡献;辉长岩正εNd值特征(+2.5~+7.0)、REE平坦型或弱富集型以及亏损大部分不相容元素(Nb,P,Ti,U,Th,LREE)特征,反映软流圈地幔对岩浆形成产生重要贡献。幔源玄武质次火山岩主要为钙碱性岩系,REE平坦型,低(87Sr/86Sr)i(<0.7060)、高εNd(高达+4.3),同位素组成接近于MORB,证明其来源于亏损的软流圈地幔。根据这些构造-岩浆事件的时空分布、岩石组合特征、岩石地球化学以及岩浆演变序列,提出了一个青藏高原大陆碰撞的四阶段演化模式。这个模式强调了170~60Ma,新特提斯洋板片回转,印度大陆与亚洲大陆发生碰撞(≥65Ma),并导致加厚地壳深熔;260~54Ma,印度大陆板片向北陡深俯冲,下地壳缩短加厚,地壳深熔作用持续;353~41Ma,新特提斯洋板片发生断离,并向下拆沉。软流圈物质透过板片断离窗上涌,诱发地幔楔、上覆加厚的镁铁质下地壳熔融;4陡深俯冲的印度大陆板片因特提斯洋板片断离而发生折返,开始低角度俯冲(<40Ma),导致高原内部的陆内俯冲、走滑剪切与地壳缩短,造成冈底斯岩浆间断(40~26Ma)和拉萨地体初始抬升。因此,在青藏高原碰撞造山过程中,主碰撞期造山(65~41Ma)的动力机制主要是印度大陆板片的陡角度俯冲和特提斯洋板片断离,晚碰撞期造山(40~26Ma)的动力机制主要为印度大陆板片的低角度俯冲。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号