首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   6篇
地球物理   8篇
地质学   6篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
全球地磁感应测深数据三维反演   总被引:2,自引:0,他引:2       下载免费PDF全文
全球地磁感应测深能获得地幔转换带及下地幔上部的导电结构.但目前稀疏的地磁台站分布及部分台站的观测数据稳定性较差,影响了三维反演对地下电性结构的分辨力和反演可靠性.为此,区别于传统的L2-范数反演方法,本文提出并实现了基于L1-范数的地磁测深响应三维反演技术.在反演中,利用L1-范数度量数据预测误差,降低"飞点"数据的影响,将相关系数较小的C-响应估计也纳入反演数据中.三维正演模拟采用球坐标系下的交错网格有限差分法,反演采用有限内存拟牛顿法.文中利用指数概率密度分布函数构造非高斯噪声的合成数据,并采用棋盘模型对反演方法的可靠性进行了验证.之后,我们将本文提出的三维反演方法用于全球129个地磁观测台站的C-响应数据反演,结果表明在地幔转换带深部,中国东北地区为高导电异常,南欧和北非则均为高阻;夏威夷在900km以下为高导;菲律宾海及以东地区在转换带表现为明显的高阻,这些结果与前人研究结果一致.由于采用了更多的台站数据,我们的反演结果还发现一些新的异常:南美洲南端,转换带表现为明显的高导;澳大利亚东南部,地幔转换带深部,也存在一个明显的高导异常,这些异常分布和地震层析成像的低速区一致.因此,L1-范数三维反演能够充分利用全球C-响应数据信息,提高地磁测深对地球深部电性结构的分辨能力,更好的研究全球地幔电性结构.  相似文献   
2.
3.
地磁测深研究的周期范围通常为10~5~10~7s,缺少反映浅部电性结构的短周期信息,而C-响应受浅部电阻率影响明显,因此本文提出在反演中增加浅部(约200 km)电阻率约束以提高深部反演的稳定性和可靠性.在磁层环状电流满足P_1~0假设的条件下,球坐标系中一维导电薄球层状地球的C-响应和电导率分布关系由边界条件通过递推的方法计算得到.反演采用有限内存拟牛顿(L-BFGS)法;浅部电阻率约束通过将目标函数对模型参数的梯度设为零来实现;通过置信区间分析评价约束反演结果的可靠性.合成数据的无约束反演虽然最终的拟合效果很好,但浅部电阻率受初始模型影响,差异较大;采用浅部约束后,反演结果对初始模型依赖性明显减小,同时还能显著提高200~600 km范围内反演结果的准确性.对全球近地轨道卫星观测的C-响应数据约束反演后结果与前人一致,表现为地幔电导率整体上随着深度的增加而增加.参数置信区间分析表明,由于约束反演加入了浅部信息,电阻率的变化范围更加紧致,说明反演结果更加可靠.因此,有必要通过其他地球物理方法,如长周期大地电磁测深等获得浅部电阻率分布,作为先验信息参加反演,进行浅部约束的C-响应反演,获得更可靠的一维全深度电性结构,为地磁测深数据解释奠定基础.  相似文献   
4.
以广州台站为例,研究海洋效应对中国沿海地磁观测C-响应的影响.海洋效应的三维正演模拟采用球坐标系下交错网格有限差分方法,假设磁层环形电流源,正演电阻率结构模型采用"地表3-D电导+1-D层状背景"复合模型.数值模拟结果表明,中国地区沿海C-响应受海洋效应影响明显.在空间上,沿海岸线方向,受海洋效应影响,单周期的C-响应由无海洋效应的常值变形为平行于海岸线的等值线密集梯度带;在垂直海岸方向,海洋效应影响向内陆减小,其影响可达哈尔滨-贵阳一线.海洋效应影响采用比值法进行校正,以广州台站为例,在比值曲线上发现海洋效应对C-响应的影响最大周期可达20天左右,并且就中国沿海而言,相对全球平均一维模型,利用中国地区平均一维电导率模型作为背景模型的海洋效应校正结果更加合理.进一步对广州台站海洋效应校正前后的C-响应进行了1-D反演,由于校正前的C-响应在小周期时受海洋效应特别大,直接反演无法拟合数据;但校正后反演拟合明显变好,得到的1-D导电模型表明广州地区上地幔及地幔转换带的电阻率比中国平均电阻率高约一个量级,推测中国华南地区南部的地幔转换带可能处于相对冷的环境,该模型可能成为菲律宾海板块西向俯冲并滞留到华南大陆下方地幔转换带的电性证据.  相似文献   
5.
本文提出了能提高异常体分辨能力,同时得到绝对电导率的地面磁电阻率数据三维反演方法.磁电阻率响应用准直流的低频磁场代替;数值模拟由频率域电场满足的Helmholtz方程出发,采用三维交错网格有限差分法;长直导线源作为发射源,其中源的计算包含在背景场中;结合地面磁电阻率数据各分量的特点,选择y分量进行反演研究;反演采用三维非线性共轭梯度反演技术,为了提高异常体的深度分辨能力,进行迭代重构反演;用印模法对初始模型进行重构,采用的是辅模型在浅部,元模型在深部的组合方式.从合成数据和实际数据的反演结果可以得到以下的认识:(1)由频率域麦克斯韦方程组出发,低频磁场数据反演可以直接得到电导率,而不是相对电导率之比;(2)采用印模法组合初始模型,进行迭代重构反演,可以提高地面磁电阻率数据反演对异常体的分辨能力,确定埋深位置,同时不会丧失对于浅部异常体的分辨能力;(3)在结合印模法的地面磁电阻率数据三维反演中,深部异常体的分辨能力受地表不均匀导电体影响较小;(4)确定印模深度可以采用上一次重构反演结束时的模型变化量,通过相邻两次重构反演结束时的模型变化量之差来确定迭代重构是否终止.因为静磁场与重力场在数学上的相似性,本文的反演方法可以被运用到重力场等位场的地面数据的反演中.  相似文献   
6.
地磁测深C-响应,包含着地球内部结构的导电信息,因此获得高质量的C-响应估计对于揭示地球内部准确的电性结构至关重要,为此本文提出一种计算地磁测深C-响应的新思路.不同于以往单个频点估计办法,新方法基于相邻频率C-响应连续光滑的特性同时估计所有频率的C-响应.首先,根据求取C-响应的Z/H方法,由观测的Hr和Hθ构造估计C-响应的线性方程组;为了增强方程组求解的稳定性,克服噪声影响,要求估计的C-响应满足光滑性条件,从而将无约束的C-响应估计转化为阻尼最小二乘理论的C-响应估计优化问题.合成数据和实际台站数据的测试结果表明,光滑约束优化技术能比传统的逐频求取方法得到更加合理和连续的响应曲线;虽然正则化参数的选择对C-响应估计的结果有明显影响,但通过L-曲线和V-曲线确定的最优正则化参数可以在保证数据真实性的前提下获得最佳的C-响应估计.基于全局光滑约束获得的C-响应为提高反演结果的可靠性奠定基础,为利用更多台站的C-响应获得高分辨力的地球深部电性结构提供了技术支持.  相似文献   
7.
为了减小时间域航空电磁法在强磁性地区应用时产生的磁极化电流对反演的影响,提出了一种在雅可比矩阵中加入磁导率偏导数,将电阻率、磁导率和层厚进行全时同步反演的方法。将磁性均匀半空间模型、单个磁性模型和多个磁性层模型的时间域响应添加高斯噪声作为模拟数据进行全时反演,得到的模型与理论模型拟合较好,拟合误差均在3%以下,验证了本文算法的有效性,说明在强磁性地区本文提出的算法能有效解决地下介质的电性分布。  相似文献   
8.
一维导电薄球层状模型的地磁测深C-响应计算   总被引:1,自引:1,他引:0  
对地磁数据的反演是获取地球深部电性结构的1种重要方法,其反演结果的可靠性必须以准确的正演模拟为基础。文中详细介绍了球坐标系中导电薄球层状地球模型的C-响应计算理论,并对典型的地球模型进行了数值模拟。地磁测深的激发源为磁层中的电流体系,其形态由球谐函数P01近似表示。地球内部,导电层中电矢量位满足亥姆霍兹方程;通过各层界面上磁场法向分量和切向分量满足的连续边界条件,由超导地核确定的核幔边界系数向上逐层递推,进而获得地表的边界系数,最终将地下电性结构和地表磁场各分量联系起来。通过磁场分量比值得到与源强度无关而与地球内部导电性相关的地表C-响应,实现地磁测深一维正演计算。一维典型模型的C-响应与前人结果的一致性验证了本文算法的有效性;通过与直接计算的C-响应曲线进行对比,发现由于忽略了地球曲率的影响,利用地磁函数转换方法获得的C-响应在大周期时(10~6s)与理论响应存在一定的偏差,会造成反演结果的不准确。用文中的数值模拟方法能获得精确的C-响应,进而支撑地磁测深一维反演结果的可靠性。  相似文献   
9.
基于球坐标系下有限差分的地磁测深三维正演   总被引:2,自引:0,他引:2  
为了计算全球尺度电磁感应的响应,本文介绍地磁测深频率域三维正演。正演算法采用球坐标系下的交错网格有限差分方法,从Maxwell方程的积分形式出发,采用PARDISO对离散后的方程组求解,避免了迭代求解的散度校正。为了验证本文结果的正确性和精度,与前人的有限元和有限差分方法进行了对比,一维层状模型的三维交错网格有限差分数值结果和解析解相对误差小于5%,双半球模型的计算结果与前人的计算结果完全吻合。三维"棋盘模型"计算表明磁场分量对异常体的大小和位置具有很好的分辨能力。  相似文献   
10.
相山铀矿田是中国重要的铀矿生产基地。为研究相山铀矿田地球物理特征,进而寻找相山地区铀成矿的有利部位,笔者利用非线性共轭梯度3D反演方法进行反演计算。结果显示,该地区地下结构表现出明显的3层结构,推测第一层高阻异常是下白垩统鹅湖岭组,第二层低阻异常是下白垩统打鼓顶组,第三层高阻异常是中元古界基底变质岩。结合地质情况,根据测井曲线得到第一层与第二层之间的第一成矿界面电阻率约为2 000Ω·m,第二层与第三层之间的第二成矿界面电阻率约为500Ω·m。依据两成矿界面电阻率描绘出测区的成矿界面的形态特征呈现地区分布不均匀性,第一成矿界面西南部保存较好,测区南部被断层切割明显;第二成矿界面在中部保存较好,边缘缺失。根据成矿界面和断裂复合部位得到成矿有利区,第一成矿界面的有利区位于测区中部和南部,第二成矿界面的有利区位于测区边缘。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号