首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   97篇
  国内免费   111篇
测绘学   44篇
大气科学   81篇
地球物理   48篇
地质学   246篇
海洋学   60篇
天文学   1篇
综合类   123篇
自然地理   80篇
  2024年   3篇
  2023年   13篇
  2022年   25篇
  2021年   24篇
  2020年   21篇
  2019年   35篇
  2018年   27篇
  2017年   18篇
  2016年   13篇
  2015年   13篇
  2014年   52篇
  2013年   41篇
  2012年   37篇
  2011年   32篇
  2010年   32篇
  2009年   35篇
  2008年   23篇
  2007年   32篇
  2006年   37篇
  2005年   33篇
  2004年   25篇
  2003年   28篇
  2002年   19篇
  2001年   17篇
  2000年   10篇
  1999年   8篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
排序方式: 共有683条查询结果,搜索用时 31 毫秒
1.
在柴达木盆地尕斯库勒盐湖区,通过对芦苇、赖草、海韭菜、无脉苔草、洽草、盐地风毛菊、羊齿天门冬、小花棘豆和白刺9种盐生植物生长区土壤容重、含水量、全盐量、pH值、全氮、速效钾、速效磷进行测试分析,研究其对盐渍化土壤的改良效果。试验结果表明:9种盐生植物均可降低土壤容重、全盐量和pH值,提高土壤含水量,其平均全盐量较裸地降低了3.79%~85.40%,平均降低幅度为44.99%,小花棘豆降低土壤容重相对较为显著(17.39%),无脉苔草相对较差(1.37%);盐地风毛菊降低土壤pH值的能力相对较强(5.11%),羊齿天门冬相对较弱;赖草提高土壤含水量相对较为显著(26.05%),白刺相对较差(1.85%)。9种盐生植物可不同程度增加土壤全氮含量,且随取样深度增加全氮含量呈逐渐降低的变化趋势;9种盐生植物坡面地表以下垂直方向0~20 cm土体速效磷含量表现出增加趋势,其中在地表以下20~50 cm位置速效磷含量增加相对较为显著,土体速效磷含量增加的程度由大至小依次为:小花棘豆、赖草、无脉苔草、海韭菜、白刺、羊齿天门冬、芦苇、洽草和盐地风毛菊。研究结果对于利用盐生植物防治土壤盐渍化,以及进一步提高土壤可持续利用有实际价值。  相似文献   
2.
史前人类向青藏高原扩散的过程和适应高海拔缺氧环境的机制是多学科关注的热点科学问题.青海湖盆地是青藏高原旧石器-中石器时代遗址分布最为丰富的区域,对这些遗址出土的石制品原料的分析有助于深入理解青藏高原史前狩猎采集人群的石料开发策略、人群迁徙和交流联系.青海湖盆地151遗址出土的928件石制品的石料研究分析显示,处于末次冰消期的下文化层的石制品以近源的石英和石英岩为主要原料,而处于全新世早中期的上文化层在同类型近源石料仍占主体地位的情况下,开始出现较高比例和多样化的优质硅质石料,并且主要用于生产细石器.野外调查和查阅地质资料均未发现青海湖盆地内有151遗址中出现的同类型优质硅质石料产出,推测其来自远距离搬运.青海湖盆地内其他8个末次冰消期至全新世中期遗址的3269件石制品石料分析结果显示,与151遗址同类型的远源优质硅质石料在全新世早期开始在盆地内的遗址中出现.这一结果表明青海湖盆地末次冰消期古人类活动强度和范围有限,全新世早中期古人类受到全新世大暖期气候变好和周边地区农业人群兴起挤压活动空间的双重影响,在高原上的活动范围和强度大大增加,伴随着开始有意识地开发优质石料,较频繁地进行远距离迁移和人群交流.远源优质硅质石料的产地可能位于北祁连山区和青藏高原上的陆相火山岩区,需要未来更深入的研究揭示.该研究为深入理解青藏高原古人类的高海拔环境适应策略和移动模式提供了重要材料,为理解史前人类向高原扩散的机制提供了重要信息.  相似文献   
3.
焦家断裂蚀变带是胶东地区最重要的控矿构造之一。该断裂带控制的矿床是创立“焦家式”金矿理论的重要实例基础。目前,焦家断裂带累计探明Au资源储量超过1200 t,并且还在不断增加,展现了深部重要的勘查和研究价值。焦家断裂带控制的矿体主要赋存在主断面下盘,断裂带发育于花岗岩中时,上盘发育钾长石化花岗岩、绢英岩化花岗岩、黄铁绢英岩化花岗质碎裂岩、(黄铁)绢英岩质碎裂岩,下盘发育黄铁绢英岩质碎裂岩、黄铁绢英岩化花岗质碎裂岩、黄铁绢英岩化花岗岩和钾化花岗岩,蚀变类型在主断面两侧呈现对称分布特征。但是在岩性特征、结构构造、蚀变强度、化学成分等方面差异明显,表现出非镜像对称特征。上盘蚀变岩厚度大于下盘,下盘花岗岩的构造破碎程度比上盘花岗岩更严重;断裂带上盘黄铁矿含量低、一般无矿化显示,下盘黄铁矿含量高,出现金矿化;断裂带上盘的中生代花岗岩中韧性变形不发育,以脆性破裂为主,下盘发育明显的韧性变形;断裂带上下盘不同蚀变带的成矿元素Au,矿化剂元素S,成矿伴生元素Ag、Pb、Zn,亲石分散元素Ba、Sr以及主量元素Na2O、MgO含量具有差异性,指示焦家断裂带主断裂面两盘经历了不同的成矿作用过程,下盘花岗岩的热液蚀变作用与成矿作用的关系更为密切。依据焦家断裂带不同蚀变带元素的非镜像对称性特征,可利用上、下盘花岗岩和构造蚀变带的地球化学标志识别矿体或者不同蚀变带的位置,对认识“焦家式”金矿床的成因机制、预测深部成矿前景、指导深部找矿具有重要理论和实际意义。  相似文献   
4.
赵求东  赵传成  秦艳  苌亚平  王建 《冰川冻土》2020,42(4):1285-1298
木扎提河是天山南坡冰川面积覆盖率最大(48.2%)的河流, 流域径流过程对气候变化极为敏感, 为了合理管理和规划水资源, 确保水资源的可持续利用, 亟需定量评估气候变化对该流域水文过程的影响。以VIC-CAS分布式水文模型为计算平台, 利用实测的径流和两次冰川编目间的冰川面积变化数据开展了模型的多目标参数化校正和验证, 有效提高了模拟结果的“真实性”, 然后通过数值模拟结果结合观测数据定量解析了流域径流的组成、 变化特征及对气候变化的响应机理。结果表明: 木扎提河总径流集中在暖季(5 - 9月), 占全年总径流量的77.9%, 冰川径流、 融雪径流和降雨径流分别占总径流量的66.6%、 26.4%和7.0%。1971 - 2010年木扎提河流域气温和降水呈显著增加趋势, 由于降水的增加, 降雨和融雪径流均呈增加趋势, 但冰川径流呈现明显减少趋势, 导致总径流呈现下降趋势。在RCP4.5情景下, 未来该流域气温呈现明显升高趋势, 降水表现为微弱下降趋势; 气候变暖后, 更多降水以降雨形式发生, 未来降雨径流将明显增加, 降雪和融雪径流已于20世纪90年代达到峰值, 随后明显减少; 冰川面积将持续萎缩, 冰川径流于21世纪10年代达到拐点, 随后明显减少, 导致河道总径流量也将明显减少。  相似文献   
5.
基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测   总被引:4,自引:0,他引:4  
以2001—2016年逐日MODIS积雪产品为主要数据源,在高亚洲区域发展了大尺度融雪末期雪线高度的遥感提取方法,并对其2001—2016年的时空变化特征进行了分析。提取方法首先对逐日的MODIS积雪覆盖率产品进行去云处理,获得积雪覆盖日数(SCD)数据集;并用冰川年物质平衡观测数据、融雪末期Landsat数据对提取终年积雪的MODIS SCD阈值进行率定;最后以MODIS SCD提取的终年积雪面积结合地形“面积—高程”曲线实现大尺度融雪末期雪线高度信息的提取。结果表明:① 高亚洲融雪末期雪线高度的空间异质性较强,总体上呈南高北低的纬度地带性分布规律;并因受山体效应的影响,雪线高度由高海拔地区向四周呈环形逐渐降低的特点。② 高亚洲2001—2016年融雪末期雪线高度总体上表现为明显的增加趋势。在744个30 km的监测格网中,24.2%的格网雪线高度呈显著增加,而仅0.9%的格网呈显著下降。除兴都库什、西喜马拉雅外,其他地区雪线高度均表现为升高趋势,显著上升的地区主要分布在天山、喜马拉雅中东部和念青唐古拉山等,其中以东喜马拉雅升高最为显著(8.52 m yr -1)。③ 夏季气温是影响高亚洲融雪末期雪线高度变化的主要因素,两者具有显著的正相关关系(R = 0.64,P < 0.01)。  相似文献   
6.
李爱  王建  宋樾  刘建国  薛胜超 《地质学报》2018,92(2):263-277
红旗岭铜镍硫化物矿床位于兴-蒙造山带东部。矿区出露30多个镁铁-超镁铁质侵入体,主要由橄榄岩、辉石岩和辉(苏)长岩组成。本文通过对红旗岭含矿镁铁-超镁铁质岩体的主、微量及铂族元素(PGE)的研究,探讨了红旗岭岩体成矿母岩浆性质、PGE亏损的原因以及岩体形成的构造环境。全岩主、微量元素地球化学分析表明,红旗岭岩体具有高MgO(平均28.75%)、低TiO2(平均0.44%),富集轻稀土元素(LREE)、亏损高场强元素(HFSE),极低ΣPGE(平均2.08×10~(-9))和高Cu/Pd(平均2916×10~3)的特征。岩石样品显示相似的微量和PGE配分模式,表明其来源于相同的岩浆源区。根据橄榄石-熔体平衡及质量平衡原理估算出红旗岭母岩浆为高镁玄武质岩浆(MgO=10.74%、FeO=7.78%)。红旗岭母岩浆在早期演化过程中发生硫化物熔离作用导致了红旗岭含矿岩体PGE的极度亏损。结合中亚造山带东段构造演化历史,本文认为红旗岭岩体形成于晚三叠世碰撞后伸展环境,矿床的形成受到了古亚洲洋俯冲结束后板片断离的影响。  相似文献   
7.
GRAPES_GFS模式全球降水预报的主要偏差特征   总被引:1,自引:0,他引:1  
刘帅  王建捷  陈起英  孙健 《气象学报》2021,79(2):255-281
利用2017年1、4、7、10月“全球降水观测(global precipitation measurement,GPM)计划”每日08时(北京时)的24 h累计降水量和逐30 min降水量观测产品,从降水量和频率等角度,对同期GRAPES全球模式(GRAPES_GFS)第1(D1)、3(D3)、5天(D5)的全球降水预报性能和偏差特征进行细致评估与分析,且对低纬度暖池和北半球中纬度风暴路径区进行了重点观察,初步探讨了降水预报偏差特征在低纬度和中纬度明显不同的可能原因。结果显示:(1)GRAPES_GFS的D1—D5预报对全球日降水(量和频率)分布描述合理,能准确再现纬向平均降水(量和频率)的典型特征—降水“双峰”极大位于南北纬20°之间,次极大位于南北纬40°—50°地区的特征,以及关键区日降水时、空演变和降水日循环逐日演变的主要趋势特征。(2)低纬度的纬向平均湿日(≥0.1 mm/d)频率预报正偏差很小,但日降水量和强降水日(>25 mm/d)频率预报的正偏差明显、偏差极大值“双峰”位置恰是相应观测极大值所在处(南北纬5°—10°);中纬度的纬向平均日降水量预报基本无偏,但明显的湿日降水频率预报正偏差(20%—30%)和强降水日频率负偏差出现在南北纬40°—60°。降水偏差正、负分布特征随季节和预报时效基本保持不变,预报均方根误差数倍于平均误差,暗示模式降水预报偏差有系统性且性能表现波动较大。(3)日循环中,模式在暖池的降水量预报正偏差缘于降水强度预报偏强,降水频率预报的弱负偏差主要与降水落区预报偏小有关;而模式在北半球风暴路径区降水频率预报的正偏差则是降水落区预报偏大和空报弱降水事件两方面因素造成。(4)模式降水(量和频率)预报偏差特征在低纬度和中纬度的明显差异与模式次网格尺度和网格尺度降水比例失调有关,改进线索指向模式对流参数化方案中深对流的启动和深对流降水量的处理以及对流参数化方案与云微物理方案的协同问题。   相似文献   
8.
我国地质结构具有3大板块、3大构造域多旋回构造演化特征,造就多种类型叠合沉积盆地,构成克拉通+前陆、断陷+坳陷、前陆+坳陷3种主要类型。大型叠合盆地是油气资源分布与勘探开发主体。我国常规与非常规油气资源十分丰富,常规石油地质资源量1 075×108 t,常规天然气地质资源量83×1012 m3;致密油地质资源量134×108 t,致密砂岩气地质资源量21×1012 m3,页岩油地质资源量335×108 t,页岩气地质资源量56×1012 m3。陆上油气资源主要分布于渤海湾(陆上)、松辽、鄂尔多斯、塔里木、四川、准噶尔、柴达木7大盆地。海域油气资源主要分布于渤海湾(海域)、东海及南海北部的珠江口、北部湾、莺歌海、琼东南6大盆地。未来我国油气勘探应始终坚持“资源战略,稳油增气”战略,坚持“非常并进、海陆统筹”积极进取勘探思路;常规勘探领域,陆上地层-岩性、前陆、海相碳酸盐岩与潜山领域;海域为渤海海域构造与基岩潜山,深水构造与岩性;非常规油气主要是立足陆上7大含油气盆地,立足致密油气与页岩油气,强化勘探开发与技术配套。  相似文献   
9.
10.
王秀娜  丁永建  王建  赵传成 《冰川冻土》2021,43(4):1179-1189
利用1960—2017年日降水量资料,采用线性倾向趋势分析、滑动分析和泰森多边形法等,对河西地区多年降水时空变化特征及不同量级降水日数及降水强度的变化趋势进行了研究。结果表明:河西地区年均降水量为99.0 mm,呈现明显的逐年上升趋势,平均倾向率为8.72 mm?(10a)-1,月降水量为单峰分布,5—10月夏秋汛期降水量占年降水量的89.2%,各季节降水量均呈现显著上升趋势;年均降水日数为36.7天,呈现明显的上升趋势,增幅为3.18 d?(10a)-1,降水日数主要分布在夏季,约占总降水日数的54.6%;平均降水强度为2.70 mm?d-1,呈现减弱趋势,变化速率为-0.04 mm?d-1?(10a)-1;零星小雨和小雨降水日数均呈现增加趋势,而二者平均降水强度均为下降趋势,小到中雨降水日数和降水强度呈现增加趋势,中雨及以上的降水变化趋势不明显。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号