首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131424篇
  免费   2423篇
  国内免费   916篇
测绘学   3100篇
大气科学   9357篇
地球物理   25971篇
地质学   46398篇
海洋学   11974篇
天文学   29303篇
综合类   339篇
自然地理   8321篇
  2021年   1255篇
  2020年   1468篇
  2019年   1591篇
  2018年   3342篇
  2017年   3147篇
  2016年   3737篇
  2015年   2123篇
  2014年   3612篇
  2013年   6832篇
  2012年   3908篇
  2011年   5269篇
  2010年   4681篇
  2009年   6159篇
  2008年   5434篇
  2007年   5335篇
  2006年   5139篇
  2005年   4221篇
  2004年   4276篇
  2003年   3867篇
  2002年   3564篇
  2001年   3095篇
  2000年   2898篇
  1999年   2376篇
  1998年   2434篇
  1997年   2262篇
  1996年   1928篇
  1995年   2063篇
  1994年   1807篇
  1993年   1699篇
  1992年   1586篇
  1991年   1533篇
  1990年   1642篇
  1989年   1425篇
  1988年   1290篇
  1987年   1555篇
  1986年   1362篇
  1985年   1697篇
  1984年   1977篇
  1983年   1880篇
  1982年   1720篇
  1981年   1624篇
  1980年   1427篇
  1979年   1375篇
  1978年   1392篇
  1977年   1247篇
  1976年   1191篇
  1975年   1166篇
  1974年   1150篇
  1973年   1213篇
  1972年   737篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Astronomy Letters - The emission from the Crab nebula exhibits a significant gamma-ray variability. In this paper we have analyzed this variability in terms of periodicity. Using the pulsar...  相似文献   
2.
Springs are the point of origin for most headwater streams and are important regulators of their chemical composition. We analysed solute concentrations of water emerging from 57 springs within the 3 km2 Fool Creek catchment at the Fraser Experimental Forest and considered sources of spatial variation among them and their influence on the chemical composition of downstream water. On average, calcium and acid neutralizing capacity (bicarbonate-ANC) comprised 50 and 90% of the cation and anion charge respectively, in both spring and stream water. Variation in inorganic chemical composition among springs reflected distinct groundwater sources and catchment geology. Springs emerging through glacial deposits in the upper portion of the catchment were the most dilute and similar to snowmelt, whereas lower elevation springs were more concentrated in cations and ANC. Water emerging from a handful of springs in a geologically faulted portion of the catchment were more concentrated than all others and had a predominant effect on downstream ion concentrations. Chemical similarity indicated that these springs were linked along surface and subsurface flowpaths. This survey shows that springwater chemistry is influenced at nested spatial scales including broad geologic conditions, elevational and spatial attributes and isolated local features. Our results highlight the role of overlapping factors on solute export from headwater catchments.  相似文献   
3.
Redox hot spots occurring as metal-rich anoxic groundwater discharges through oxic wetland and river sediments commonly result in the formation of iron (Fe) oxide precipitates. These redox-sensitive precipitates influence the release of nutrients and metals to surface water and can act as ‘contaminant sponges’ by absorbing toxic compounds. We explore the feasibility of a non-invasive, high-resolution magnetic susceptibility (MS) technique to efficiently map the spatial variations of magnetic Fe oxide precipitates in the shallow bed of three rivers impacted by anoxic groundwater discharge. Laboratory analyses on Mashpee River (MA, USA) sediments demonstrate the sensitivity of MS to sediment Fe concentrations. Field surveys in the Mashpee and Quashnet rivers (MA, USA) reveal several discrete high MS zones, which are associated with likely anoxic groundwater discharge as evaluated by riverbed temperature, vertical head gradient, and groundwater chemistry measurements. In the East River (CO, USA), widespread cobbles/rocks exhibit high background MS from geological ferrimagnetic minerals, thereby obscuring the relatively small enhancement of MS from groundwater induced Fe oxide precipitates. Our study suggests that, in settings with low geological sources of magnetic minerals such as lowland rivers and wetlands, MS may serve as a complementary tool to temperature methods for efficiently mapping Fe oxide accumulation zones due to anoxic groundwater discharges that may function as biogeochemical hot spots and water quality control points in gaining systems.  相似文献   
4.
Solar System Research - Ionizing radiation is one of the main factors that destroy biomolecules in extraterrestrial conditions. The effects of radiation depend on the conditions of the exposure...  相似文献   
5.
Astronomy Letters - We consider the spatial restricted circular three-body problem in the nonresonant case. The massless body (satellite) is assumed to have a large sail area and, therefore, the...  相似文献   
6.
Solar System Research - Within the framework of Tsallis nonextensive statistics, the criteria for the Jeans gravitational instability are derived for a self-gravitating protoplanetary disk, whose...  相似文献   
7.
Izmailov  I. S.  Shakht  N. A.  Polyakov  E. V.  Gorshanov  D. L.  Pogodin  M. A. 《Astrophysics》2021,64(2):160-171
Astrophysics - This paper is a continuation of our earlier work devoted to determining the orbit and mass of the star 61 Cyg and the changes in the photometric characteristics of its components....  相似文献   
8.
Transmission electron microscope studies of fine‐grained rims in three CM2 carbonaceous chondrites, Y‐791198, Murchison, and ALH 81002, have revealed the presence of widespread nanoparticles with a distinctive core–shell structure, invariably associated with carbonaceous material. These nanoparticles vary in size from ~20 nm up to 50 nm in diameter and consist of a core of Fe,Ni carbide surrounded by a continuous layer of polycrystalline magnetite. These magnetite shells are 5–7 nm in thickness irrespective of the diameter of the core Fe,Ni carbide grains. A narrow layer of amorphous carbon a few nanometers in thickness is present separating the carbide core from the magnetite shell in all the nanoparticles observed. The Fe,Ni carbide phases that constitute the core are consistent with both haxonite and cohenite, based on electron diffraction data, energy dispersive X‐ray analysis, and electron energy loss spectroscopy. Z‐contrast scanning transmission electron microscopy shows that these core–shell magnetite‐carbide nanoparticles can occur as individual isolated grains, but more commonly occur in clusters of multiple particles. In addition, energy‐filtered transmission electron microscopy (EFTEM) images show that in all cases, the nanoparticles are embedded within regions of carbonaceous material or are coated with carbonaceous material. The observed nanostructures of the carbides and their association with carbonaceous material can be interpreted as being indicative of Fischer–Tropsch‐type (FTT) reactions catalyzed by nanophase Fe,Ni metal grains that were carburized during the catalysis reaction. The most likely environment for these FTT reactions appears to be the solar nebula consistent with the high thermal stability of haxonite and cohenite, compared with other carbides and the evidence of localized catalytic graphitization of the carbonaceous material. However, the possibility that such reactions occurred within the CM parent body cannot be excluded, although this scenario seems unlikely, because the kinetics of the reaction would be extremely slow at the temperatures inferred for CM asteroidal parent bodies. In addition, carbides are unlikely to be stable under the oxidizing conditions of alteration experienced by CM chondrites. Instead, it is most probable that the magnetite rims on all the carbide particles are the product of parent body oxidation of Fe,Ni carbides, but this oxidation was incomplete, because of the buildup of an impermeable layer of amorphous carbon at the interface between the magnetite and the carbide phase that arrested the reaction before it went to completion. These observations suggest that although FTT catalysis reactions may not have been the major mechanism of organic material formation within the solar nebula, they nevertheless contributed to the inventory of complex insoluble organic matter that is present in carbonaceous chondrites.  相似文献   
9.
Izvestiya, Atmospheric and Oceanic Physics - Results of assessment are presented for the relationship between the forest cover of small dry valleys and their spectral response through analysis of...  相似文献   
10.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号