首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   39篇
  国内免费   14篇
测绘学   30篇
大气科学   75篇
地球物理   150篇
地质学   185篇
海洋学   36篇
天文学   108篇
综合类   2篇
自然地理   83篇
  2023年   6篇
  2022年   4篇
  2021年   20篇
  2020年   18篇
  2019年   29篇
  2018年   41篇
  2017年   26篇
  2016年   40篇
  2015年   34篇
  2014年   26篇
  2013年   37篇
  2012年   28篇
  2011年   27篇
  2010年   30篇
  2009年   47篇
  2008年   31篇
  2007年   30篇
  2006年   17篇
  2005年   18篇
  2004年   15篇
  2003年   20篇
  2002年   12篇
  2001年   5篇
  2000年   9篇
  1999年   6篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1973年   2篇
  1968年   1篇
  1958年   1篇
排序方式: 共有669条查询结果,搜索用时 257 毫秒
1.
We report on the petrography and mineralogy of five Yamato polymict eucrites to better constrain the formation and alteration of crustal material on differentiated asteroids. Each sample consists of different lithic clasts that altogether form four dominant textures and therefore appear to originate from closely related petrological areas within Vesta′s crust. The textures range from subophitic to brecciated, porphyritic, and quench‐textured, that differ from section to section. Comparison with literature data for these samples is therefore difficult, which stresses that polymict eucrites are extremely complex in their petrography and investigation of only one thick section may not be representative for the host rock. We also show that sample Y‐793548 consists of more than one lithic unit and must therefore be classified as polymict instead of monomict. The variety and nature of lithic textures in the investigated Yamato meteorites indicate shock events, intense post‐magmatic thermal annealing, and secondary alteration. These postmagmatic features occur in different intensities, varying from clast to clast or among coexisting mineral fragments on a small, local scale. Several clasts within the eucrites studied have been modified by late‐stage alteration processes that caused deposition of Fe‐rich olivine and Fe enrichment along cracks crosscutting pyroxene crystals. However, formation of these secondary phases seems to be independent of the degree of thermal metamorphism observed within every type of clast, which would support a late‐stage metasomatism model for their formation.  相似文献   
2.
Groundbased radio observations indicate that Jupiter's ammonia is globally depleted from 0.6 bars to at least 4-6 bars relative to the deep abundance of ∼3 times solar, a fact that has so far defied explanation. The observations also indicate that (i) the depletion is greater in belts than zones, and (ii) the greatest depletion occurs within Jupiter's local 5-μm hot spots, which have recently been detected at radio wavelengths. Here, we first show that both the global depletion and its belt-zone variation can be explained by a simple model for the interaction of moist convection with Jupiter's cloud-layer circulation. If the global depletion is dynamical in origin, then important endmember models for the belt-zone circulation can be ruled out. Next, we show that the radio observations of Jupiter's 5-μm hot spots imply that the equatorial wave inferred to cause hot spots induces vertical parcel oscillation of a factor of ∼2 in pressure near the 2-bar level, which places important constraints on hot-spot dynamics. Finally, using spatially resolved radio maps, we demonstrate that low-latitude features exceeding ∼4000 km diameter, such as the equatorial plumes and large vortices, are also depleted in ammonia from 0.6 bars to at least 2 bars relative to the deep abundance of 3 times solar. If any low-latitude features exist that contain 3-times-solar ammonia up to the 0.6-bar ammonia condensation level, they must have diameters less than ∼4000 km.  相似文献   
3.
4.
Plesiosaurs     
Plesiosaurs are an unusual and intriguing group of extinct aquatic reptiles ( Fig. 1 ). They are sauropterygians, a group known from an array of semi‐aquatic forms during the Triassic period: placodonts, pachypleurosaurs and nothosaurs. The first plesiosaurs are known from the very latest Triassic, but by the Early Jurassic plesiosaurs were cosmopolitan in distribution and lasted successfully to the latest Cretaceous, when they became victims of the K‐T extinction event. Plesiosaurs were predominantly marine organisms, although their fossils are not uncommon in brackish or even fresh water deposits. We know that all plesiosaurs were carnivorous; many of them were top predators in their respective ecosystems. But with no living descendants (or analogues) plesiosaurs are mysterious fossil organisms—as we will see, many questions regarding their biology remain unanswered or contentious. However, plesiosaurs are currently undergoing renewed scientific attention.
Figure 1 Open in figure viewer PowerPoint The beautifully preserved skeleton of the plesiosaur Rhomaleosaurus victor seen in ventral view, from the Lower Jurassic (Toarcian) of Holzmaden, Germany (total length 3.44 m). Redrawn from Fraas (1910).  相似文献   
5.
SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200–1700 m) into the gentle gradients (1–2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6–18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed >16 km3 of sediment from an 85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows.Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the initial locus of canyon formation, and outcropping basement rocks have prevented canyon incision on the lower slope. A major jog in the canyon axis, linear tributaries, and a prominent sidescan lineament all trend NW-NNW, reflecting OAH basement influence on canyon morphology. This erosional fabric may reflect joint/fracture patterns in the sedimentary strata that follow the basement trends. Once the canyons have eroded down to more erosion-resistant levels, channel downcutting slows relative to lateral erosion of the canyon walls. This accounts for the change from a narrow canyon axis in the thickly sedimented forearc basin to a wider, more rugged canyon morphology near the OAH. About 9500 km3 of sediment has been eroded from the central, 200 km long, segment of the Izu-Bonin forearc by the formation of Aoga Shima, Myojin Sho and Sumisu Jima canyons. The volume of sediment presently residing in the adjacent trench, accretionary wedge, and lower slope terrace basin accounts for <25% of that eroded from the canyons alone. This implies that a large volume (>3500 km3 per 100 km of trench, ignoring sediments input via forearc bypassing) has been subducted beneath the toe of the trench slope and the small accretionary prism. Unless this sediment has been underplated beneath the forearc, it has recycled arc material into the mantle, possibly influencing the composition of arc volcanism.  相似文献   
6.
A survey of the distribution of nonvolatile fatty acids and hydrocarbons in the oceans is given. The results represent more a “feel” from the literature rather than a mathematical analysis and are given in Table III. Fatty acid concentration appears to show a greater variation, presumably because they are more prone to biological influences than the hydrocarbons.  相似文献   
7.
Engineering projects that require deformation monitoring frequently utilize geodetic sensors to measure displacements of target points located in the deformation zone. In situations where control stations and targets are separated by a kilometer or more, GPS can offer higher precision position updates at more frequent intervals than can normally be achieved using total station technology. For large-scale deformation projects requiring the highest precision, it is therefore advisable to use a combination of the two sensors. In response to the need for high precision, continuous GPS position updates in harsh deformation monitoring environments, a software has been developed that employs triple-differenced carrier-phase measurements in a delayed-state Kalman filter. Two data sets were analyzed to test the capabilities of the software. In the first test, a GPS antenna was displaced using a translation stage to mimic slow deformation. In the second test, data collected at a large open pit mine were processed. It was shown that the delayed-state Kalman filter developed could detect millimeter-level displacements of a GPS antenna. The actual precision attained depends upon the amount of process noise infused at each epoch to accommodate the antenna displacements. Higher process noise values result in quicker detection times, but at the same time increase the noise in the solutions. A slow, 25 mm displacement was detected within 30 min of the full displacement with sigma values in E, N and U of ±10 mm or better. The same displacement could also be detected in less than 5 h with sigma values in E, N and U of ±5 mm or better. The software works best for detecting long period deformations (e.g., 20 mm per day or less) for which sigma values of 1–2 mm are attained in all three solution components. It was also shown that the triple-differenced carrier-phase observation can be used to significantly reduce the effects of residual tropospheric delay that would normally plague double-differenced observations in harsh GPS environments.
Don KimEmail:
  相似文献   
8.
This article presents a micromechanical approach to the problem of unsaturated water flow in heterogeneous porous media in transient conditions. The numerical formulation is based on the two-scale model obtained previously by periodic homogenization. It allows for a coupled solution of the non-linear flow equations at macroscopic and microscopic scales and takes into account the macroscopic anisotropy of the medium and the local non-equilibrium of the capillary pressure. The model was applied to simulate two-dimensional water infiltration at constant flux into an initially dry medium containing inclusions of square and rectangular shapes. The numerical results showed the influence of the inclusion–matrix conductivity ratio and the local geometry on the macroscopic behavior. The influence of the conductivity ratio manifested itself by the acceleration or retardation of the onset of the macroscopic water flux at the outlet, while the local geometry (anisotropy) significantly affected the macroscopic spatial distribution of the water flux. Such type of approach can be extended to simulate coupled phenomena (for example hydro-mechanical problems) with evolving local geometry.  相似文献   
9.
This article is the first in a series designed to gain insight into the stellar oscillation problem from a somewhat novel point of view: that of potential scattering, well-known in the quantum mechanical literature. In this paper the known theoretical foundations are developed and applied in the context of the astrophysical problem, wherein the star itself (rather than any portion of it) is the potential which scatters waves and traps them. The basis for the identification of a precisely defined scattering problem is the existence of a linear Schrödinger equation associated both globally (Section 2) and locally (Section 8) with the nonlinear eigenvalue equation for nonradial stellar pulsations. The paper is also designed to be a fairly complete account of the relevant mathematical topics that are germane to a study of this kind. This paper is dedicated to the memory of Professor Zdenèk Kopal, who was a great source of professional encouragement to me during the last fifteen years of his life.  相似文献   
10.
Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean–Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06–1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories.

Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450–489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to a combination of major global-scale tectono-thermal and atmospheric–palaeoclimatic events, a simpler explanation of these apparently enigmatic palaeoslope values may be pertinent. Of the two possible palaeohydrological formulae for calculating palaeoslope, one provides results close to typical fluvial gradients; the other formula relies on preserved channel-width data. We suggest that the latter will not be reliable due to problematic preservation of original channel-widths within an active braided fluvial system. We thus find no unequivocal support for a unique fluvial style for the Precambrian, beyond that generally accepted for that period and discussed briefly in the first paragraph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号