首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   15篇
  国内免费   3篇
测绘学   21篇
大气科学   29篇
地球物理   146篇
地质学   266篇
海洋学   29篇
天文学   60篇
综合类   2篇
自然地理   20篇
  2023年   2篇
  2022年   8篇
  2021年   9篇
  2020年   7篇
  2019年   5篇
  2018年   47篇
  2017年   38篇
  2016年   22篇
  2015年   21篇
  2014年   32篇
  2013年   30篇
  2012年   29篇
  2011年   29篇
  2010年   28篇
  2009年   21篇
  2008年   19篇
  2007年   19篇
  2006年   13篇
  2005年   44篇
  2004年   55篇
  2003年   22篇
  2002年   6篇
  2001年   10篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1961年   2篇
  1949年   1篇
排序方式: 共有573条查询结果,搜索用时 15 毫秒
1.
Because the mixture of seawater and freshwater in the Gyeongin-Ara Waterway in South Korea can lead to the intrusion of saline water into surrounding aquifers, systematic management through the establishment of a groundwater protection area is required. The analytic hierarchy process (AHP) model is used to delineate this protection area based on two primary factors and five secondary factors related to saline water intrusion. The study area is divided into 987 gridded cells with a unit size of 100 × 100 m, and the final evaluation score for each cell is calculated using the AHP model. Consequently, several artificial neural network models based on a multilayer perceptron are developed using the AHP’s secondary criteria and the evaluation score. Comparing the evaluation scores of ANN and AHP, more than 180 samples are required in the ANN model to insure high R2 between the original and estimated values. The ANN model is more consistent than the AHP model when determining groundwater protection area, because it can be re-constructed due to the changes in some secondary criteria and also changed due to a standardization process. The final evaluation score by the ANN model based on 300 samples, with the highest R2, is calculated and the regions with a score higher than 2.0 are selected as the groundwater protection area, accounting for 15% of the total cells. This area is similar to the range within approximately 200 m of the GA Waterway and also includes some changing sites in hydrogeochemistry and electric conductivity, which is produced by saline water intrusion. If the land-use type, groundwater levels, and some other criteria change at any cell, the ANN model can be re-executed to verify whether the cell belongs to a groundwater protection area. Considering that salinity of groundwater near the waterway can be affected by various factors including well depth, pumping conditions, and groundwater levels, the ANN model, which is a non-linear model, can be more effective for prediction than the AHP model.  相似文献   
2.
We present preliminary statistics on the precipitable water vapor (PWV) content over the Karakaya Hills in Erzurum city, where the largest optical and near-infrared astronomical telescope in Turkey will be operated. Since the observatory will observe in the near-infrared (NIR), it is intended to perform PWV measurements of the atmosphere above the site by using signal delays in Global Positioning System (GPS) communication. The analysis of the GPS data recorded on the summit for almost one year shows that the atmosphere over the site of the observatory, which has an altitude of 3170 m, has favorable conditions for NIR observations. From GPS measurements, we report that the site had an average PWV of 3.2 mm and a median PWV of 2.7 mm between October 6, 2016, and June 15, 2017. We also present the time dependency of the PWV content and the correlations between the amount of PWV and the other meteorological records gathered from radiosonde flights and ground-based measurements.  相似文献   
3.
We present a study on human perception of map complexity, with the objective of better understanding design decisions that may lead to undesirable levels of complexity in web maps. We compare three complexity metrics to human ratings of complexity obtained through a user survey. Specifically, we use two algorithmic approaches published by others, which measure feature congestion (FC) and subband entropy (SE), as well as our own approach of counting object types rather than individual objects. We compare these metrics with each other as well as with human complexity ratings for three maps of the same area from map providers Google Maps, Bing Maps, and OpenStreetMap. Each map design is assessed at three different scales (levels of detail). We find that (1) the FC and SE metrics appear to be adequate predictors of what humans consider complex; (2) object-type counts are slightly less successful at predicting human-rated complexity, implying that clutter is more important in perceived complexity than diversity of symbology; and (3) generalization choices do impact human complexity ratings. These findings contribute to our understanding of what makes a map complex, with implications for designing maps that are easy to use.  相似文献   
4.
Afyonkarahisar is a very important geothermal province of western Anatolia and has low and medium enthalpy geothermal areas. This study has been carried out for the preparation of distribution maps of soil gases (radon and carbon dioxide) and shallow soil temperature and the exploration of permeable tectonic regions associated with geothermal systems and reveal the origins of radon and carbon dioxide gases. The western district of the study area is characterized by the high radon concentration (168.30 kBq/m3), carbon dioxide ratio (0.30%), and soil temperature (21.0 °C) values. Fethibey and Demirçevre faults, which allow the circulation of geothermal fluids, have been detected in the distribution maps of radon, carbon dioxide, and shallow depth temperature and the directions of the curves in these maps correspond to the strikes of Demirçevre faults. The effect of the fault plays an important role in the change of carbon dioxide concentration along the W-E directional geological section prepared to determine the change of soil gas and shallow depth temperature values depending on lithological differences, fault existence, and geothermal reservoir depth. On the other hand, it was determined that Rn222 concentration and soil temperature changed as a function of geothermal reservoir depth or lithological difference. Tuffs in Köprülü volcano-sedimentary units are the main source of radon due to their higher uranium contents. Besides, the carbon dioxide in Ömer–Gecek soils has geothermal origin because of the highest carbon dioxide content (99.3%) in non-condense gas. The similarities in patterns of soil temperature, radon, and carbon dioxide indicate that the variation in soil temperatures is related to radon and carbon dioxide emissions. It is concluded that soil gas and temperature measurements can be used to determine the active faults in the initial stage of geothermal exploration successfully.  相似文献   
5.
In this study, soil radon levels have been measured for the first time across the Ganos fault (GF), which is known as the western part of the North Anatolian Fault Zone. LR 115 Type 2 Solid State Nuclear Track Detectors (time integrated) have been applied to determine soil gas radon levels, and the survey was performed in 16 stations along the fault line. The results showed that soil gas radon concentrations and variation of concentration levels are comparable high along the fault line. It is also observed that in the middle of the Ganos Fault, fairly elevated radon levels were detected. These can be related to the activity of the fault lines. It is confirmed that the study area has a very active tectonic structure and is great location for analyzing radon variations.  相似文献   
6.
Quenched juvenile mafic inclusions (enclaves) are an occasional but informative component in the deposits of large felsic eruptions. Typically, the groundmasses of these inclusions rapidly crystallize as the mafic magma is chilled against a more voluminous, cooler felsic host, providing a physical and chemical record of the nature and timing of mafic–felsic interactions. We examine mafic inclusions of two compositional lineages (tholeiitic and calc-alkaline) from deposits of the 25.4 ka Oruanui eruption (Taupo, New Zealand). 2-D quantitative textural data from analysis of back-scattered electron images reveal a marked diversity in the groundmass textures of the inclusions, including median crystal sizes (amphibole: 14–45 µm; plagioclase: 21–75 µm) and aspect ratios (amphibole: 1.7–4.2; plagioclase: 2.1–4.0), area number densities (amphibole: 122–2660 mm?2; plagioclase: 117–2990 mm?2), area fractions (?) of minerals (?plag?=?23–45%, ?amph?=?0–28%, ?cpx?=?0–6%, ?oxides?=?0.6–5.5%), and the relative abundance of plagioclase and amphibole (?plag/?amph?=?1.0–4.6). Textural parameters vary more significantly within, rather than between, the two compositional lineages, and in some cases show marked variations across individual clasts, implying that each inclusion’s cooling history, rather than bulk composition, was the dominant control on textural development. Groundmass mineral compositions are also diverse both within and between inclusions (e.g. plagioclase from An34–92, with typical intra-clast variability of ~?20 mol%), and do not correlate with bulk chemistry. Diverse groundmass textures and mineral and glass chemistries are inferred to reflect complex interplay of a range of factors including the degree and rate of undercooling, bulk composition, water content and, possibly, intensive variables. Our data are inconsistent with breakup of a crystallizing ponded mafic layer at the base of the Oruanui melt-dominant body, instead implying that each inclusion partially crystallized as a discrete body with a unique cooling history. Extensive ingestion of mush-derived macro-crystals suggests that mechanical breakup of mafic feeder dikes occurred within a transition zone between the mush and melt-dominant magma body. In this zone, the mush lacked yield strength, as has been inferred from field studies of narrow (meters to few tens of meters) mush-melt transition zones preserved in composite intrusions. Evidence for plastic deformation of inclusions during eruption and the abundance of fresh residual glass in inclusions from all eruptive phases suggest that the inclusions formed syn-eruptively, and must have been formed recurrently at multiple stages throughout the eruption.  相似文献   
7.
This study was performed at an area of 50?×?48 m2 being defined as a new settlement in the northeast of Sivas. In the study, the discontinuities that are not deep and their geophysical characteristics were examined by the GPR and MASW methods. For interpretation, GPR cross sections were prepared as 2D–3D, and MASW cross sections were prepared as 2D. As for geophysical cross sections, about 10 m depth was examined. It was understood that the reflections observed in the form of hyperbolas in GPR cross sections correspond to areas having low S wave velocity (Vs) in MASW cross sections. It was understood that the S wave velocities are lower than 653 m/s, that the seismic velocities in between 653 and 275 m/s indicate partially deteriorated areas and that the S wave velocities of unweathered gypsums are higher than 1275 m/s at these low-velocity zones. Thus, it was thought that the fill material that may arise in the fracture, crack and deterioration areas arises from intercalation and clastic gypsum units, and that it plays a role in having low value S wave velocities. In all the geophysical cross sections, it was understood that the structures with gypsum are intense at the initial 5 m. And a fracture at the south of the study area, that it was estimated might be longer than 40 m, was determined as the largest gypsum structure. It was understood that this fracture starts from a depth of about 5 m in the west and that it slopes down to 7 m depth in the east. According to these results, it was understood that the damage amount arising in time in the gypsum structures from the effect of water may increase, the study area was defined as risky, and the required importance should be attached to these structures especially in foundation engineering.  相似文献   
8.
A conceptual model with water samples from ten geothermal fields (?smil, Ilg?n (Çavu?cugöl), Tuzlukçu-Ak?ehir, Seydi?ehir and Kavakköy, Hüyük, Ere?li-Akhüyük, Kad?nhan?, Cihanbeyli, Karap?nar and Bey?ehir) in the province of Konya defined the geothermal system. Carbonates, quartzite and marbles of Paleozoic metamorphics are the reservoir rocks and the heating sources are igneous rock intrusions and geothermal gradient. The variable thermal water (CaMgHCO3, CaSO4, NaSO4, CaHCO3, CaNaHCO3, NaCl and CaNaClHCO3) had EC and temperature between 177.8 and 56,100 μS/cm and between 18.3 and 44 °C, respectively. Ca2+ in geothermal fluids are associated with marble and carbonate rocks and the high chloride shows direct connection with deep geothermal system, and prolonged contact with evaporite rocks. Sulphate originates from dissolution of and oxidation of sulphate and sulphur-bearing minerals. The high As, B, F and Mn concentration in some thermal water samples were determined as 85 μg/l, 148.56 mg/l, 3.01 mg/l and 208.13 mg/l, respectively. Reservoir temperatures computed by Na/K geothermometers were between 85.37–158.89 °C for Ak?ehir thermal waters and 58.78–90.45 °C for Ere?li thermal waters. The maximum reservoir temperature of other geothermal waters was 75 °C by the silica geothermometers.  相似文献   
9.
Onuşluel Gül  Gülay  Gül  Ali  Najar  Mohamed 《Natural Hazards》2022,110(2):1389-1404

In the context of major outcomes of a steadily changing climate, extreme climatic conditions and the associated events in various forms of weather-related natural disasters, e.g. droughts, floods, and heat waves, are more frequently experienced on the global scale in recent years. In support of this argument, there are adequate numbers of explicit signals over such a persistent outlook, which is greatly illustrated by historical data and observations. This study, which is mainly oriented to investigating the drought behaviour in Thracian, Aegean and Mediterranean transects of Turkey's major river basins, is actually inspired by the foreseen potential of using annual maximum drought severity series (based on drought definition through the standardized precipitation index (SPI)) within a framework that resembles the use of flood discharge directly from flow measurements in a river basin. To this end, a series of spatial analyses were employed to identify different aspects of flood appearance in the study extent, including trend views on annual average drought severity series, shifts in the starting time of the annually most severe flood periods, and changes in spatial coverage views of average drought conditions under different drought severity categories. The framework of the analytical approaches depends greatly on validated international datasets and open-source computational algorithms. The results from the analyses that were conducted in two consecutive periods of 1958–1980 and 1981–2004 revealed that Turkey's western and southern river basin systems seemed to have experienced quite different behaviours between the two periods in terms of drought severity magnitudes, drought durations and annual occurrence times.

  相似文献   
10.

The Genç District is located on the Bingöl Seismic Gap (BSG) of the Eastern Anatolian Fault Zone (EAFZ) with its?~?34.000 residents. The Karl?ova Triple Junction, where the EAFZ, the North Anatolian Fault Zone, and the Varto Fault Zone meet, is only 80 km NE of the Genç District. To make an earthquake disaster damage prediction of the Genç District, carrying a high risk of disaster, we have (1) prepared a new geological map, and (2) conducted a single-station microtremor survey. We defined that three SW-NE trending active faults of the sinistral Genç Fault Zone are cutting through the District. We have obtained dominant period (T) as?<?0.2 s, the amplification factor (A) between 8 and 10, the average shear wave velocity for the first 30 m (Vs30) as?<?300 m/s, and the seismic vulnerability index (Kg) as?>?20, in the central part of the Genç District. We have also prepared damage prediction maps for three bedrock acceleration values (0.25, 0.50, 0.75 g). Our earthquake damage prediction scenarios evidenced that as the bedrock acceleration values increase, the area of soil plastic behavior expands linearly. Here we report that if the average expected peak ground acceleration value (0.55–0.625 g) is exceeded during an earthquake, significant damage would be inevitable for the central part of the Genç District where most of the schools, mosques, public buildings, and hospitals are settled-down.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号