首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
地球物理   13篇
地质学   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
  1996年   1篇
排序方式: 共有17条查询结果,搜索用时 18 毫秒
1.
Contrary to many laboratory investigations, common empirical correlations from in situ tests consider that the increase in the percentage of fines leads to an increase of the cyclic liquefaction resistance of sands. This paper draws upon the integrated Critical State Soil Mechanics framework in order to study this seemingly not univocal effect. Firstly the effect of fines on the Critical State Line (CSL) is studied through a statistical analysis of a large data set of published monotonic triaxial tests. The results show that increasing the content of non-plastic fines practically leads to a clockwise rotation of the CSL in (e–ln p) space. The implication of this effect on cyclic liquefaction resistance is subsequently evaluated with the aid of a properly calibrated critical state elasto-plastic constitutive model, as well as a large number of published experimental results and in situ empirical correlations. Both sets of data show clearly that a fines content, less than about 30% by weight, may prove beneficial at relatively small effective stresses (p0<50–70 kPa), such as the in situ stresses prevailing in most liquefaction case studies, and detrimental at larger confining stresses, i.e. the stresses usually considered in laboratory tests. To the extent of these findings, a correction factor is proposed for the practical evaluation of liquefaction resistance in terms of the fines content and the mean effective confining stress.  相似文献   
2.
This paper presents a new plasticity model developed for the simulation of monotonic and cyclic loading of non‐cohesive soils and its implementation to the commercial finite‐difference code FLAC, using its User‐Defined‐Model (UDM) capability. The new model incorporates the framework of Critical State Soil Mechanics, while it relies upon bounding surface plasticity with a vanished elastic region to simulate the non‐linear soil response. Stress integration of constitutive relations is performed using a recently proposed explicit scheme with automatic error control and substepping, which so far has been employed in the literature only for constitutive models aiming at monotonic loading. The overall accuracy of this scheme is evaluated at element level by simulating cyclic loading along complex stress paths and by using iso‐error maps for paths involving change of the Lode angle. The performance of the new constitutive model and its stress integration scheme in complex boundary value problems involving earthquake‐induced liquefaction is evaluated, in terms of accuracy and computational cost, via a number of parametric analyses inspired by the successful simulation of the VELACS centrifuge Model Test No. 2 studying the lateral spreading response of a liquefied sand layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
Soil effects on peak ground acceleration, velocity and elastic response spectra (5% damping) are expressed by simple approximate relations in terms of five key parameters: (a) the fundamental vibration period of the non‐linear soil, TS, (b) the period of a bedrock site of equal thickness, Tb, (c) the predominant excitation period, Te, (d) the peak seismic acceleration at outcropping bedrock, a, and (e) the number of significant excitation cycles, n. Furthermore, another relation is proposed for the estimation of TS in terms of the soil thickness H, the average shear wave velocity of the soil V?S,o and a. The aforementioned parameters were first identified through a simplified analytical simulation of the site excitation. The multivariable approximate relations were then formulated via a statistical analysis of relevant data from more than 700 one‐dimensional equivalent‐linear seismic ground response analyses, for actual seismic excitations and natural soil conditions. Use of these relations to back‐calculate the numerical results in the database gives an estimate of their error margin, which is found to be relatively small and unbiased. The proposed relations are also independently verified through a detailed comparison with strong motion recordings from seven well‐documented case studies: (a) two sites in the San Fernando valley during the Northridge earthquake, and (b) five different seismic events recorded at the SMART‐1 accelerometer array in Taiwan. It is deduced that the accuracy of the relations is comparable to that of the equivalent‐linear method. Hence, they can be readily used as a quick alternative for routine applications, as well as for spreadsheet computations (e.g. GIS‐aided seismic microzonation studies) where numerical methods are cumbersome to implement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
The 3-D shell theory is employed in order to provide a new perspective to earthquake-induced strains in long cylindrical underground structures, when soil-structure interaction can be ignored. In this way, it is possible to derive analytical expressions for the distribution along the cross-section of axial, hoop and shear strains and also proceed to their consistent superposition in order to obtain the corresponding principal and von Mises strains. The resulting analytical solutions are verified against the results of 3-D dynamic FEM analyses. Seismic design strains are consequently established after optimization of the analytical solutions against the random angles which define the direction of wave propagation relative to the longitudinal structure axis, the direction of particle motion and the location on the structure cross-section. The basic approach is demonstrated herein for harmonic shear (S) waves with plane front, propagating in a homogeneous half-space or in a two layer profile, where soft soil overlays the bedrock.  相似文献   
5.
This paper presents results from numerical simulations of the propagation of an active dip–slip fault rupture through a uniform soil layer covering the rigid bedrock. Following verification of the numerical methodology against field evidence, a parametric study is performed for loose and dense sand, for normally consolidated and overconsolidated clay, as well as for different fault dip angles (normal and reverse faults) and for different thicknesses of the soil cover. The soil is modeled as an elasto-plastic, strain-softening material that obeys the Mohr–Coulomb failure criterion. The study aims at establishing criteria for the approximate depiction of the location and the width of the zone with significant ground surface distortion, where the differential ground displacements induced by the fault rupture may threaten the integrity of man-mad structures.  相似文献   
6.
Extensive damage to pile-supported structures has been witnessed in several recent earthquakes (Chi-Chi, 1999; Kobe, 1995, etc.), as a result of liquefaction-induced lateral spreading of slightly sloping ground or free-face topographic irregularities. This paper presents a parametric analysis of the basic pile and soil parameters, as well as the pile-soil interaction mechanisms affecting the response of single piles subjected to such lateral spreading, based on numerical simulation with the nonlinear P-y method. In parallel, a set of design charts and analytical relations is established, for approximate computation of maximum pile deflections and bending moments, using a “theory guided” multi-variable statistical analysis of the numerical predictions. Three different combinations (design cases) of pile head constraints and soil conditions were considered, which are commonly encountered in practice. The overall accuracy of the proposed analytical relations is evaluated against experimental results from seven centrifuge and five large shaking table experiments.  相似文献   
7.
This paper presents the constitutive relations and the simulative potential of a new plasticity model developed mainly for the seismic liquefaction analysis of geostructures. The model incorporates the framework of critical state soil mechanics, while it relies on bounding surface plasticity with a vanished elastic region to simulate the non-linear soil response. Key constitutive ingredients of the new model are: (a) the inter-dependence of the critical state, the bounding and the dilatancy (open cone) surfaces on the basis of the state parameter ψ, (b) a (Ramberg–Osgood type) non-linear hysteretic formulation for the “elastic” strain rate, (c) a discontinuously relocatable stress projection center related to the “last” load reversal point, which is used for mapping the current stress point on model surfaces and as a reference point for introducing non-linearity in the “elastic” strain rate and finally (d) an empirical index of the directional effect of sand fabric evolution during shearing, which scales the plastic modulus. In addition, the paper outlines the calibration procedure for the model constants, and exhibits its accuracy on the basis of a large number of laboratory element tests on Nevada sand. More importantly, the paper explores the potential of the new model by presenting simulations of the VELACS centrifuge tests of Models No 1 and 12, which refer to the free-field liquefaction response of Nevada sand and the seismic response of a rigid foundation on the same sand, respectively. These simulations show that the new model can be used successfully for the analysis of widely different boundary value problems involving earthquake soil liquefaction, with the same set of model constants calibrated on the basis of laboratory element tests.  相似文献   
8.
The 1999, Ms=5.9, Athens earthquake caused serious structural damage to buildings in the western part of Athens, Greece. This paper presents the ground zoning against seismic hazard proposed shortly after the earthquake in order to aid reconstruction of the area. Existing engineering geological and geotechnical data were combined with local observations to provide a unified set of classification criteria, consistent with provisions of the Greek Seismic Code EAK. The accuracy and the possible limitations of this zoning procedure are addressed through comparison with observed damage distribution as well as results from seismic ground response analyses performed at sites with well established soil profiles. There is clear evidence that the proposed zones correspond to geological formations exhibiting grossly different seismic response with regard to the design of common engineering structures. However, the mostly qualitative nature of the guidelines for ground categorisation provided by EAK and the general lack of systematic, site-specific geotechnical data for the whole area induce uncertainties in the definition of the seismic design actions for the different zones. These objective uncertainties certainly demand increased conservatism but do not limit application of the proposed methodology for first aid, preliminary planning in the event of destructive earthquakes.  相似文献   
9.
The Athens, Greece, earthquake of 7 September 1999 provided a number of reliable strong motion recordings and well-defined patterns of damage at sites with known geological and geotechnical conditions. Joint evaluation of this evidence shows that the very stiff soils of the Athens basin, compared to the nearby outcropping soft rocks, have amplified the peak horizontal acceleration by an average of 40% or more and have shifted elastic response spectra to higher periods. US and the European seismic code provisions (NEHRP-97 and EC-8), place stiff soils and soft rocks at the same site category and consequently fail to predict these adverse effects. A larger number of site categories and new site coefficients that depend on the seismic excitation frequency appear necessary in order to overcome this deficit of the codes.  相似文献   
10.
Summary On 26 March, 1993, a moderate magnitude earthquake (M s=5.5) occurred at 3 km epicentral distance from the town of Pyrgos, in Southern Greece, causing extensive damage to masonry houses. To explain the variability of seismic intensity over the town and to propose measures against future seismic activity, a microzonation study was undertaken which combined geological, geophysical and geotechnical investigations, site specific analyses of seismic ground response and detailed recording of structural damage. The analytical predictions of ground response are correlated to soil conditions and then used to identify (micro-)zones of sites with similar seismic response. Furthermore, they are compared to quantitative estimates of damage distribution over the town. It is concluded that the peak ground acceleration, normalized against the input peak seismic acceleration, is a function of the local soil conditions as well as the seismic excitation characteristics. Hence, it cannot be defined uniquely at a site, without reference to the seismic excitation. However, the normalized peak ground velocity and the acceleration response spectra are mainly functions of the soil conditions and can be used as criteria for the practical definition of (micro-)zones. The distribution of damage in various parts of the town is at least partially attributable to local soil effects. The small epicentral distance of the earthquake, connected with the direction of the fault rupture, as well as the quality and techniques of construction, are additional factors that may have influenced the extent and distribution of damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号