首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   3篇
大气科学   14篇
地球物理   4篇
地质学   66篇
海洋学   3篇
天文学   3篇
自然地理   20篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   8篇
  2008年   1篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   5篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
1.
2.
Fossil stromatolites may reveal information about their hydrochemical palaeoenvironment, provided that assignment to a specific microbial community and a corresponding biogeochemical mechanism of formation can be made. Tithonian stromatolites of the Münder Formation at Thüste, north Germany, have traditionally been considered as formed by intertidal cyanobacterial communities. However, thin sections of the stromatolites show elongated angular traces of former gypsum crystals in a dense arrangement, but no algal or cyanobacterial filament traces. Moreover, high Fe2+ and Mn2+ contents, oxygen‐isotope and sulphur‐isotope ratios of carbonate‐bound sulphates, and sulphurized hydrocarbon biomarkers of the stromatolitic carbonate indicate that CaCO3 precipitation occurred near the oxic–anoxic interface as a result of intensive bacterial sulphur cycling rather than photosynthetic activity. Furthermore, anaerobic oxidation of methane by Archaea may have driven CaCO3 precipitation in deeper parts of the biofilm community, as reflected by high concentrations of squalane with a strongly negative δ13C in conjunction with evaporite pseudomorphs showing extremely low δ13CCarb ratios. Consequently, the Thüste stromatolites are now interpreted as having initially formed by gypsum impregnation of biofilms. Subsequently, early Mg‐calcitic calcitization within the biofilms occurred because of combined bacterial iron, manganese and sulphate reduction, with an increasing contribution of anaerobic oxidation of methane with depth. This model plausibly explains the prominent preservation of signals derived from oxygen‐independent metabolic pathways, whereas virtually no geochemical record exists for an aerobic community that may, nevertheless, have prevailed at the stromatolite surface. Photic‐zone stromatolites with a prominent signal of anaerobic oxidation of methane may be common in, and indicative of, oxygen‐depleted sulphate‐bearing environments with high rates of methane production, conditions that possibly were fulfilled at the Archaean to Proterozoic transition.  相似文献   
3.
4.
Marine, fluvial and glacigene sediments exposed in coastal cliffs and stream-cut sections in East Greenland between latitudes 69° and 78° N display a record of Quaternary climatic and environmental change going back to pre-Saalian times (> 240 ka), but with main emphasis on the last interglacial/glacial cycle. The stratigraphical scheme is based on studies on the Jameson Land peninsula, and contains five glacial stages and stades with the Greenland ice sheet or its outlets reaching the outer coasts. Individual sites are correlated and dated by a combination of biostratigraphy, luminescence dating, amino acid analyses, as well as 14C- and uranium series dating. The pre-Weichselian Lollandselv and Scoresby Sund glaciations were the most extensive. During the Weichselian the Inland Ice margin in this part of East Greenland was apparently very stable. The Aucellaelv, Jyllandselv and Flakkerhuk stades mark the advance and subsequent retreat of outlet glaciers from the Inland Ice which advanced through the wide Scoresby Sund basin and reached the inner shelf. In-between the glacier advances, three interglacial or interstadial periods have been recognized. During the Langelandselv interglacia-tion (≅ Eemian) the advection of warm Atlantic water was higher than during the Holocene, and the terrestrial flora and insect faunas show that summer temperatures were 3–4°C higher than during the Holocene optimum. There is no unambiguous evidence for cooling in the sediments from this interval. Later, in isotope stage 5, there were apparently two ice-free periods. During the Hugin Sø interstade, stable Polar water dominated Scoresby Sund, and the terrestrial flora suggests summer temperatures 2° -3° lower than the present. The marine and fluvial sediments from the second ice-free period, the Mønselv interstade, are devoid of organic remains.  相似文献   
5.
Deposits of Late Pleistocene age were investigated near the Fynselv river on the southwestern coast of Jameson Land. East Greenland. The deposits are of fluvial, deltaic shallow marine and glacigenic origin. Four stratigraphic units are recorded. Unit I consists of deltaic and shallow marine deposits reflecting a relative sea level of at least 20 m above the present. Elevated fluvial deposits represent the subaerial part of the depositional system. The system existed during full interglacial and subarctic conditions as indicated by remains or flora and Fauna and unit I is correlated with the Langelandselv interglaciation (isotopic substage 5e). Unit II consists of a till deposited by a glacier in the Scoresby Sund Fjord during the beginning of the Early Weichselian referred to as the Aucellaelv stade. The glacier probably melted in a marine environment. Unit III represents a marine delta system during the Hugin Sø interstade. and reveals a relative sea level of at least 62 m above the present. Unit IV consists of till and kame deposits assumed to be deposited by a glacier in the Scoresby Sund Fjord during the Flakkerhuk stade. probably a Late Weichselian glacier advance.  相似文献   
6.
7.
Earlier work in northeast Greenland has suggested a limited advance of the Greenland Ice Sheet during the Last Glacial Maximum (LGM). However, this concept has recently been challenged by marine geological studies, indicating grounded ice on the continental shelf at this time. New 10Be‐ages from the Store Koldewey island, northeast Greenland, suggest that unscoured mountain plateaus at the outer coast were covered at least partly by cold‐based ice during the LGM. It is, however, still inconclusive whether this ice was dynamically connected to the Greenland Ice Sheet or not. Regardless of the LGM ice sheet extent, the 10Be results from Store Koldewey add to a growing body of evidence suggesting considerable antiquity of crystalline unscoured terrain near present and Pleistocene ice sheet margins.  相似文献   
8.
The major element composition of plagioclase, pyroxene, olivine,and magnetite, and whole-rock 87Sr/86Sr data are presented forthe uppermost 2·1 km of the layered mafic rocks (upperMain Zone and Upper Zone) at Bierkraal in the western BushveldComplex. Initial 87Sr/86Sr ratios are near-constant (0·7073± 0·0001) for 24 samples and imply crystallizationfrom a homogeneous magma sheet without major magma rechargeor assimilation. The 2125 m thick section investigated in drillcore comprises 26 magnetitite and six nelsonite (magnetite–ilmenite–apatite)layers and changes up-section from gabbronorite (An72 plagioclase;Mg# 74 clinopyroxene) to magnetite–ilmenite–apatite–fayaliteferrodiorite (An43; Mg# 5 clinopyroxene; Fo1 olivine). The overallfractionation trend is, however, interrupted by reversals characterizedby higher An% of plagioclase, higher Mg# of pyroxene and olivine,and higher V2O5 of magnetite. In the upper half of the successionthere is also the intermittent presence of cumulus olivine andapatite. These reversals in normal fractionation trends definethe bases of at least nine major cycles. We have calculateda plausible composition for the magma from which this entiresuccession formed. Forward fractional crystallization modelingof this composition predicts an initial increase in total iron,near-constant SiO2 and an increasing density of the residualmagma before magnetite crystallizes. After magnetite beginsto crystallize the residual magma shows a near-constant totaliron, an increase in SiO2 and decrease in density. We explainthe observed cyclicity by bottom crystallization. Initiallymagma stratification developed during crystallization of thebasal gabbronorites. Once magnetite began to crystallize, periodicdensity inversion led to mixing with the overlying magma layer,producing mineralogical breaks between fractionation cycles.The magnetitite and nelsonite layers mainly occur within fractionationcycles, not at their bases. In at least two cases, crystallizationof thick magnetitite layers may have lowered the density ofthe basal layer of melt dramatically, and triggered the proposeddensity inversion, resulting in close, but not perfect, coincidenceof mineralogical breaks and packages of magnetitite layers. KEY WORDS: layered intrusion; mineral chemistry; isotopes; magma; convection; differentiation  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号