首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4702篇
  免费   252篇
  国内免费   63篇
测绘学   141篇
大气科学   365篇
地球物理   1087篇
地质学   1639篇
海洋学   434篇
天文学   759篇
综合类   19篇
自然地理   573篇
  2023年   18篇
  2022年   15篇
  2021年   88篇
  2020年   94篇
  2019年   117篇
  2018年   134篇
  2017年   138篇
  2016年   178篇
  2015年   162篇
  2014年   165篇
  2013年   332篇
  2012年   214篇
  2011年   297篇
  2010年   240篇
  2009年   286篇
  2008年   252篇
  2007年   257篇
  2006年   229篇
  2005年   181篇
  2004年   187篇
  2003年   163篇
  2002年   135篇
  2001年   99篇
  2000年   87篇
  1999年   84篇
  1998年   74篇
  1997年   48篇
  1996年   60篇
  1995年   42篇
  1994年   47篇
  1993年   41篇
  1992年   39篇
  1991年   37篇
  1990年   36篇
  1989年   35篇
  1988年   34篇
  1987年   36篇
  1986年   25篇
  1985年   44篇
  1984年   44篇
  1983年   34篇
  1982年   39篇
  1981年   33篇
  1980年   22篇
  1979年   22篇
  1978年   18篇
  1977年   13篇
  1974年   8篇
  1973年   6篇
  1972年   6篇
排序方式: 共有5017条查询结果,搜索用时 15 毫秒
1.
Understanding changes in evapotranspiration during forest regrowth is essential to predict changes of stream runoff and recovery after forest cutting. Canopy interception (Ic) is an important component of evapotranspiration, however Ic changes and the impact on stream runoff during regrowth after cutting remains unclear due to limited observations. The objective of this study was to examine the effects of Ic changes on long-term stream runoff in a regrowth Japanese cedar and Japanese cypress forest following clear-cutting. This study was conducted in two 1-ha paired headwater catchments at Fukuroyamasawa Experimental Watershed in Japan. The catchments were 100% covered by Japanese coniferous plantation forest, one of which was 100% clear-cut in 1999 when the forest was 70 years old. In the treated catchment, annual runoff increased by 301 mm/year (14% of precipitation) the year following clear-cutting, and remained 185 mm/year (7.9% of precipitation) higher in the young regrowth forest for 12–14 years compared to the estimated runoff assuming no clear-cutting. The Ic change was −358 mm/year (17% of precipitation) after cutting and was −168 mm/year (6.7% of precipitation) in the 12–14 years old regrowth forest compared to the observed Ic during the pre-cutting period. Stream runoff increased in all seasons, and the Ic change was the main fraction of evapotranspiration change in all seasons throughout the observation period. These results suggest that the change in Ic accounted for most of the runoff response following forest cutting and the subsequent runoff recovery in this coniferous forest.  相似文献   
2.
The H. J. Andrews Experimental Forest (HJA) encompasses the 6400 ha Lookout Creek watershed in western Oregon, USA. Hydrologic, chemistry and precipitation data have been collected, curated, and archived for up to 70 years. The HJA was established in 1948 to study the effects of harvest of old-growth conifer forest and logging-road construction on water quality, quantity and vegetation succession. Over time, research questions have expanded to include terrestrial and aquatic species, communities and ecosystem dynamics. There are nine small experimental watersheds and 10 gaging stations in the HJA, including both reference and experimentally treated watersheds. Gaged watershed areas range from 8.5 to 6242 ha. All gaging stations record stage height, water conductivity, water temperature and above-stream air temperature. At nine of the gage sites, flow-proportional water samples are collected and composited over 3-week intervals for chemical analysis. Analysis of stream and precipitation chemistry began in 1968. Analytes include dissolved and particulate species of nitrogen and phosphorus, dissolved organic carbon, pH, specific conductance, suspended sediment, alkalinity, and major cations and anions. Supporting climate measurements began in the 1950s in association with the first small watershed experiments. Over time, and following the initiation of the Long Term Ecological Research (LTER) grant in 1980, infrastructure expanded to include a set of benchmark and secondary meteorological stations located in clearings spanning the elevation range within the Lookout Creek watershed, as well as a large number of forest understory temperature stations. Extensive metadata on sensor configurations, changes in methods over time, sensor accuracy and precision, and data quality control flags are associated with the HJA data.  相似文献   
3.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   
4.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
5.
To the north of Hanoi, about a day's drive by car, lies Ha Giang Province, the northernmost region of Vietnam. Ha Giang is remote from the hustle and bustle of daily life, and beyond its eponymous provincial capital towards the border with China, mountains rise quickly to Quan Ba, ‘Heaven's Gate’. The mountains form an uneven landscape of steep‐sided karst rising from deep river‐cut gorges and form a formidable barrier on the northern frontier of Vietnam. Beyond ‘Heaven's Gate’ lies the little travelled region of Dong Van, with its majestic mountains of Palaeozoic strata rising precipitously to the sky. Here, a century ago, the French geologists Henri Mansuy and Jacques Deprat documented early finds of fossils from lower Palaeozoic strata on the border with China.  相似文献   
6.
7.
The tropical fruit durian in Southeast and East Asia has witnessed a surge in popularity in the past two decades to assume the rank of a fetishized commodity. This research investigates the construction of the multidimensional concept of terroir as applied to the durian economy of Penang, Malaysia based on personal interviews with orchard owners and state government officials to strategically embed the local in the global through the promotion of agritourism. While environmental terroir is a contingent dimension, the construction of a place bound cultural terror is anchored in a strong cultivation tradition, cultivar diversity, and a historical sense of community. This research deepens the cultural terroir dimension in two ways. First, it injects the otherwise aspatial concept of refinement to the cultural terroir narratives of orchard owners allowing the on-farm tourist consumption experience to be more geographically rooted. Second, it conceptually links cultural terroir to the marketing terroir instrument of the Balik Pulau geographical indication; while functioning as a governance tool to prevent fraud and to construct a place bound product valorization and differentiation within an expanding and larger scale durian economy, it also indirectly assists in preserving agro-diversity and local identity.  相似文献   
8.
The formal opportunity to learn geography in the United States is unevenly distributed across space, creating possible geography deserts. Data on the number of exams taken in Advanced Placement Human Geography (APHG) and bachelor’s degrees earned in geography are mapped at the state and regional scales. Normalized rates are ranked and grouped into quintiles. For APHG exams, states in the southeastern region of the United States are in the uppermost quintiles while states in the northeastern region are in the lowermost quintiles. The pattern for bachelor’s degrees in geography is somewhat the spatial inverse of that for APHG.  相似文献   
9.
Evapotranspiration (ET) is an important parameter in hydrologic processes and modelling. In agricultural watersheds with competing uses of fresh water including irrigated agriculture, estimating crop evapotranspiration (ETc) accurately is critical for improving irrigation system and basin water management. The use of remote sensing-based basal crop coefficients is becoming a common method for estimating crop evapotranspiration for multiple crops over large areas. The Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI), based on reflectance in the red and near-infrared bands, are commonly used for this purpose. In this paper, we examine the effects of row crop orientation and soil background darkening due to shading and soil surface wetness on these two vegetation indices through modelling, coupled with a field experiment where canopy reflectance of a cotton crop at different solar zenith angles, was measured with a portable radiometer. The results show that the NDVI is significantly more affected than the SAVI by background shading and soil surface wetness, especially in north–south oriented rows at higher latitudes and could lead to a potential overestimation of crop evapotranspiration and irrigation water demand if used for basal crop coefficient estimation. Relationships between the analysed vegetation indices and canopy biophysical parameters such as crop height, fraction of cover and leaf area index also were developed for both indices.  相似文献   
10.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号