首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1371篇
  免费   45篇
  国内免费   4篇
测绘学   20篇
大气科学   96篇
地球物理   338篇
地质学   492篇
海洋学   113篇
天文学   264篇
综合类   8篇
自然地理   89篇
  2022年   10篇
  2021年   11篇
  2020年   12篇
  2019年   12篇
  2018年   32篇
  2017年   12篇
  2016年   38篇
  2015年   17篇
  2014年   40篇
  2013年   54篇
  2012年   43篇
  2011年   46篇
  2010年   58篇
  2009年   66篇
  2008年   58篇
  2007年   57篇
  2006年   66篇
  2005年   41篇
  2004年   46篇
  2003年   35篇
  2002年   27篇
  2001年   23篇
  2000年   17篇
  1999年   17篇
  1998年   17篇
  1997年   11篇
  1996年   28篇
  1995年   18篇
  1994年   17篇
  1993年   16篇
  1992年   13篇
  1991年   12篇
  1990年   13篇
  1989年   10篇
  1988年   17篇
  1987年   15篇
  1986年   12篇
  1985年   31篇
  1984年   22篇
  1983年   35篇
  1982年   34篇
  1981年   26篇
  1980年   21篇
  1979年   35篇
  1978年   28篇
  1977年   17篇
  1976年   21篇
  1975年   18篇
  1974年   24篇
  1973年   27篇
排序方式: 共有1420条查询结果,搜索用时 62 毫秒
1.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
2.
A growing body of evidence suggests the operation of life and life processes in comets as well in larger icy bodies in the solar system including Enceladus. Attempts to interpret such data without invoking active biology are beginning to look weak and flawed. The emerging new paradigm is that life is a cosmic phenomenon as proposed by Hoyle and Wickramasinghe (Lifecloud: the Origin of Life in the Galaxy, 1978) and first supported by astronomical spectroscopy (Wickramasinghe and Allen, Nature 287:518, 1980; Allen and Wickramasinghe, Nature 294:239, 1981; Wickramasinghe and Allen, Nature 323:44, 1986). Comets are the transporters and amplifiers of microbial life throughout the Universe and are also, according to this point of view, the carriers of viruses that contribute to the continued evolution of life. Comets brought life to Earth 4.2 billion years ago and they continue to do so. Space extrapolations of comets, Enceladus and possibly Pluto supports this point of view. Impacts of asteroids and comets on the Earth as well as on other planetary bodies leads to the ejection of life-bearing dust and rocks and a mixing of microbiota on a planetary scale and on an even wider galactic scale. It appears inevitable that the entire galaxy will be a single connected biosphere.  相似文献   
3.
Impact crater populations help us to understand solar system dynamics, planetary surface histories, and surface modification processes. A single previous effort to standardize how crater data are displayed in graphs, tables, and archives was in a 1978 NASA report by the Crater Analysis Techniques Working Group, published in 1979 in Icarus. The report had a significant lasting effect, but later decades brought major advances in statistical and computer sciences while the crater field has remained fairly stagnant. In this new work, we revisit the fundamental techniques for displaying and analyzing crater population data and demonstrate better statistical methods that can be used. Specifically, we address (1) how crater size-frequency distributions (SFDs) are constructed, (2) how error bars are assigned to SFDs, and (3) how SFDs are fit to power-laws and other models. We show how the new methods yield results similar to those of previous techniques in that the SFDs have familiar shapes but better account for multiple sources of uncertainty. We also recommend graphic, display, and archiving methods that reflect computers’ capabilities and fulfill NASA's current requirements for Data Management Plans.  相似文献   
4.
During the Second World War, the Allied invasion of the French coast of Normandy on D‐Day, 6 June 1944, was the greatest amphibious assault in world history. An article in Geology Today (v.11, for 1995, pp.58–63) marked the 50th anniversary of the end of the war in Europe, on 8 May 1945, by describing how British military geologists had participated in planning for D‐Day and in the NW Europe campaign that followed it. The work of these geologists provides a classic case history, revealing that ‘military geology’ has many potential applications. Geological factors influenced site selection for temporary airfields, predictions of trafficability for the Normandy beaches, the development of potable water supplies, and quarrying for road metal—and more besides. This new article helps to mark the 75th anniversary of D‐Day by further details of how geologists and geology contributed to Allied victory.  相似文献   
5.
Hunter-gatherer communities in the American Southeast reached an apogee of social and political complexity in the period between ca. 4200 and 3000 cal yr BP. In the lower Mississippi Valley(LMV) the Poverty Point culture defined this period of socio-political elaboration. However, following a significant period of climate change that led to exceptional flooding and a major reorganization of the course of the Mississippi River, this culture collapsed beginning ca. 3300–3200 cal yr BP and the LMV was abandoned for the subsequent 500 years. In this study, we use data from the Jaketown site in the Yazoo Basin of west-central Mississippi to refine the chronology of the climate event that caused the collapse of the Poverty Point culture. A large flood buried Poverty Point-era occupation deposits at Jaketown around 3310 cal yr BP. Lateral migration of the Mississippi River during flooding led to inundation of the Yazoo Basin and re-occupation of ancient river courses. A coarse sand stratum topped by a more than a meter-thick fining upward sediment package marks a crevasse deposit caused by a rupture of the natural levee at Jaketown. This levee breach was part of a larger pattern of erratic flooding throughout the LMV and is associated with major landscape evolution and the abandonment of Poverty Point sites within the valley. Early Woodland peoples re-colonized the crevasse surface after ca. 2780 cal yr BP. Following this event, the Jaketown site and the eastern Yazoo Basin witnessed a period of landscape stability that lasts to this day. These archaeological data demonstrate how climate change and natural disasters can lead to socio-political dissolution and reorganization even in relatively small-scale hunter-gatherer populations.  相似文献   
6.
A thorough and complete understanding of the structural geology and evolution of the Cooper‐Eromanga Basin has been hampered by low‐resolution seismic data that becomes particularly difficult to interpret below the thick Permian coal measures. As a result, researchers are tentative to interpret the basement fault architecture within the basin, which is largely undefined. To provide a better understanding of the basement fault geometry, all available two‐dimensional seismic lines together with 12 three‐dimensional seismic surveys were structurally interpreted with assistance from seismic attribute analysis. The Upper Cretaceous Cadna‐owie Formation and top Permian reflectors were analysed using a common seismic attribute technique (incoherency) that was used to infer the presence of faults that may have otherwise been overlooked. Detailed basement fault maps for each seismic survey were constructed and used in conjunction with two‐dimensional seismic data interpretation to produce a regional basement fault map. Large north‐northeast–south‐southwest‐striking sinistral strike–slip faults were identified within the Patchawarra Trough appearing to splay from the main northeast–southwest‐striking ridge. These sinistral north‐northeast–south‐southwest‐striking faults, together with field‐scale southeast–northwest‐striking dextral strike–slip faults, are optimally oriented to have potentially developed as a conjugated fault set under a south‐southeast–north‐northwest‐oriented strike–slip stress regime. Geomechanical modelling for a regionally extensive system of Cretaceous polygonal faults was performed to calculate the Leakage Factor and Dilation Tendency of individual faults. Faults that extend into Lower Cretaceous oil‐rich reservoirs with strikes of between 060°N and 140°N and a high to near‐vertical dip angle were identified to most likely be acting as conduits for the tertiary migration of hydrocarbons from known Lower Cretaceous hydrocarbon reservoirs into shallow Cretaceous sediments. This research provides valuable information on the regional basement fault architecture and a more detailed exploration target for the Cooper‐Eromanga Basin, which were previously not available in literature.  相似文献   
7.
The assessment of sediment yield from reservoir siltation requires knowledge of the reservoir's sediment trap efficiency (TE). Widely used approaches for the estimation of the long‐term mean TE rely on the ratio of the reservoir's storage capacity (C) to its catchment size (A) or mean annual inflow (I). These approaches have been developed from a limited number of reservoirs (N ≤ 40), most of them located in temperate climate regions. Their general applicability to reservoirs receiving highly variable runoff such as in semi‐arid areas has been questioned. Here, we examine the effect of ephemeral inflow on the TE of 10 small (≤ 280 × 103 m3), intermittently dry reservoirs located in the Kruger National Park. Fieldwork was conducted to determine the storage capacity of the reservoir basins. The frequency and magnitude of spillage events was simulated with the daily time step Pitman rainfall–runoff model. Different runoff scenarios were established to cope with uncertainties arising from the lack of runoff records and imperfect input data. Scenarios for the relationship between water and sediment discharge were created based on sediment rating curves. Taking into account uncertainties in hydrological modelling, uncertainties of mean TE estimates, calculated from all scenarios (N = 9), are moderate, ranging from ±6 to ±11% at the 95% confidence level. By comparison, estimating TE from the storage capacity to catchment area (C/A) ratio induces high uncertainty (ranges of 35 to 65%), but this uncertainty can be confined (15 to 33%) when the latter approach is combined with hydrological modelling. Established methods relying on the storage capacity to mean annual inflow (C/I) ratio most probably lead to an overestimation of the TE for the investigated reservoirs. The approach presented here may be used instead to estimate the TE of small, intermittently dry reservoirs in semi‐arid climate regions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
8.
Given its high dependence on rainfed agriculture and its comparatively low adaptive capacity, Africa is frequently invoked as especially vulnerable to climate change. Within Africa, there is likely to be considerable variation in vulnerability to climate change both between and within countries. This paper seeks to advance the agenda of identifying the hot spots of what we term “climate security” vulnerability, areas where the confluence of vulnerabilities could put large numbers of people at risk of death from climate-related hazards. This article blends the expertise of social scientists and climate scientists. It builds on a model of composite vulnerability that incorporates four “baskets” or processes that are thought to contribute to vulnerability including: (1) physical exposure, (2) population density, (3) household and community resilience, and (4) governance and political violence. Whereas previous iterations of the model relied on historical physical exposure data of natural hazards, this paper uses results from regional model simulations of African climate in the late 20th century and mid-21st century to develop measures of extreme weather events—dry days, heat wave events, and heavy rainfall days—coupled with an indicator of low-lying coastal elevation. For the late 20th century, this mapping process reveals the most vulnerable areas are concentrated in Chad, the Democratic Republic of the Congo, Niger, Somalia, Sudan, and South Sudan, with pockets in Burkina Faso, Ethiopia, Guinea, Mauritania, and Sierra Leone. The mid 21st century projection shows more extensive vulnerability throughout the Sahel, including Burkina Faso, Chad, Mali, northern Nigeria, Niger, and across Sudan.  相似文献   
9.
Increasing recognition of the value of practice-based or experiential knowledge in natural resource management justifies the creation of a new category of articles in Society & Natural Resources that we are calling Practice-Based Knowledge (PBK). The rationale for focusing on PBK is due to its key role in the emergence of hybrid governance institutions across state, market, and civil society, understanding the complexity of dynamic socioecological systems, recognizing the challenges of multiple knowledge systems and context-specific practices, embracing the power of informal institutions and civic science, and engaging debates on the growing prevalence of market-oriented conservation. The goal is to provide a dedicated space within the published, peer-reviewed literature for scholars, government officials, nonprofit managers, and engaged citizens to share experiences informed by practical action. Relevant and timely practice-based insights may improve understanding and management of social and ecological processes and systems, while also offering the potential to contribute to theory.  相似文献   
10.
Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near‐surface unconsolidated aquifers that uses small‐diameter, low‐cost wells installed with direct‐push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north‐central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low‐cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near‐surface unconsolidated aquifers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号