首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   470篇
  免费   25篇
  国内免费   2篇
测绘学   18篇
大气科学   11篇
地球物理   162篇
地质学   162篇
海洋学   34篇
天文学   86篇
综合类   2篇
自然地理   22篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   19篇
  2017年   17篇
  2016年   22篇
  2015年   16篇
  2014年   21篇
  2013年   32篇
  2012年   19篇
  2011年   28篇
  2010年   31篇
  2009年   30篇
  2008年   33篇
  2007年   28篇
  2006年   15篇
  2005年   19篇
  2004年   22篇
  2003年   13篇
  2002年   9篇
  2001年   13篇
  2000年   10篇
  1999年   2篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1985年   5篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1963年   2篇
  1961年   1篇
  1953年   1篇
  1950年   1篇
  1940年   1篇
  1939年   1篇
排序方式: 共有497条查询结果,搜索用时 312 毫秒
1.
The present paper proposes a numerical model to determine horizontal and vertical components of the hydrodynamic forces on a slender submarine pipeline lying at the sea bed and exposed to non-linear waves plus a current. The new model is an extension of the Wake II type model, originally proposed for sinusoidal waves (Soedigdo et al., 1999) and for combined sinusoidal waves and currents (Sabag et al., 2000), to the case of periodic or random waves, even with a superimposed current. The Wake II type model takes into account the wake effects on the kinematic field and the time variation of drag and lift hydrodynamic coefficients. The proposed extension is based on an evolutional analysis carried out for each half period of the free stream horizontal velocity at the pipeline. An analytical expression of the wake velocity is developed starting from the Navier–Stokes and the boundary layer equations. The time variation of the drag and lift hydrodynamic coefficients is obtained using a Gaussian integration of the start-up function. A reduced scale laboratory investigation in a large wave flume has been conducted in order to calibrate the empirical parameters involved in the proposed model. Different wave and current conditions have been considered and measurements of free stream horizontal velocities and dynamic pressures on a bottom-mounted pipeline have been conducted. The comparison between experimental and numerical hydrodynamic forces shows the accuracy of the new model in evaluating the time variation of peaks and phase shifts of the horizontal and vertical wave and current induced forces.  相似文献   
2.
The stratigraphical organization of the Pliocene thrust‐top deposits cropping out at the front of the Southern Apennine thrust‐belt has been debated for a long time taking a great importance in the context of the geodynamics of the Central Mediterranean area. During this time, spreading episodes in the Apennine backarc zone alternate with important phases of overthrusting in the thrust‐belt. As a consequence, the Pliocene succession appears to be arranged in a series of stacked units, recording the poliphase tectonic history that leads to the building of the front of the southern Apennine thrust‐belt. Although there is not yet an accordance on the nature and position of the main unconformities bounding the thrust‐top units, all authors agree that the creation of new accommodation space is mainly ruled by contractional tectonics consequent to the eastward nappe propagation according to the Apennine vergence polarity. A detailed geological survey, carried out along a large portion of southern Apennine thrust‐belt front, running south of the Vulture volcano, allowed the collecting of new data concerning the basinal‐formation mechanisms acting during the sedimentation of Pliocene deposits. From this analysis, it is clear that even if contractional tectonics is the predominant factor controlling the creation or destruction of accommodation space, other mechanisms, as well as wedge uplift‐related extensional tectonics and eustasy, could have also played a significant role in the basin accommodation. In order the considered sector of southern Apennines can provide an useful example about the complex phenomena occurring at mountain belt front where the accommodation space results from a concomitance of eustatic and tectonic factors mainly linked to the accretionary wedge activity.  相似文献   
3.
4.
A performance-based adaptive methodology for the seismic assessment of highway bridges is proposed. The proposed methodology is based on an Inverse (I), Adaptive (A) application of the Capacity Spectrum Method (CSM), with the capacity curve of the bridge derived through a Displacement-based Adaptive Pushover (DAP) analysis. For this reason, the acronym IACSM is used to identify the proposed methodology. A number of Performance Levels (PLs), for which the seismic vulnerability and seismic risk of the bridge shall be evaluated, are identified. Each PL is associated to a number of Damage States (DSs) of the critical members of the bridge (piers, abutments, joints and bearing devices). The IACSM provides the earthquake intensity level (PGA) corresponding to the attainment of the selected DSs, using over-damped elastic response spectra as demand curves. The seismic vulnerability of the bridge is described by means of fragility curves, derived based on the PGA values associated to each DS. The seismic risk of the bridge is evaluated as convolution integral of the product between the fragility curves and the seismic hazard curve of the bridge site. In this paper, the key aspects and basic assumptions of the proposed methodology are presented first. The IACSM is then applied to nine existing simply supported deck bridges, characterized by different types of piers and bearing devices. Finally, the IACSM predictions are compared with the results of nonlinear response time-history analysis, carried out using a set of seven ground motions scaled to the expected PGA values.  相似文献   
5.
This is the first part of a study on the seismic response of the L’Aquila city using 2D simulation and experimental data. We have studied two velocity-depth models with the aim of outlining the behavior of a velocity reversal in the top layer, which is associated with the stiff Brecce de L’Aquila unit (BrA). In this setting, the SMTH model is topped by a layer with about 2:1 impedance contrast with the underlying layer while the NORV model has no velocity reversal. We have simulated the propagation of SH and P-SV wavefields in the range 0–10 Hz for incidence 0°–90°. Earthquake spectral ratios of the horizontal and vertical components at six sites in L’Aquila downtown are compared to corresponding synthetics spectral ratios. The vertical component of P-SV synthetics enables us to investigate a remarkable amplification effect seen in the vertical component of the recorded strong motion. Sites AQ04 and AQ05 are best matched by synthetics from the NORV model while FAQ5 and AQ06 have a better match with synthetics spectral ratios from the SMTH model. All simulations show this behavior systematically, with horizontal and near-horizontal incident waves predicting the overall pattern of matches more clearly than vertical and near-vertical incidence. The model inferences are in agreement with new geological data reporting lateral passages in the top layer from the stiff BrA to softer sediments. Matches are good in terms of frequency of the first amplification peak and of spectral amplitude: the horizontal components have spectral ratio peaks predominantly at 0.5 Hz in the simulations and at 0.7 Hz in the data, both with amplitudes of 4, while the vertical component spectral ratios reach values of 6 at frequencies of about 1 Hz in both data and simulations. The vertical component spectral ratios are very well matched using Rayleigh waves with incidence at 90°. The NORV model without the velocity reversal predicts spectral ratio peaks for the horizontal components at frequencies up to 6 Hz. The reversal of velocity acts as a low-pass frequency filter on the horizontal components reducing the amplification effect of the sediment filled valley.  相似文献   
6.
The mechanical properties of elastomers can change significantly due to air temperature variations. In particular, prolonged exposure to subzero temperatures can result in rubber crystallization, with a considerable increase in the shear stiffness of the material. As a result, the seismic response of structures with elastomeric isolators can be strongly influenced by air temperature. Current seismic codes, indeed, require an upper and lower bound analysis, using suitable modification factors, to account for the changes in the cyclic behavior of elastomeric isolators due to air temperature variations. In this study, the sensitivity of the cyclic behavior of elastomeric isolators to air temperature variations is investigated based on the experimental results of an extensive test program on six different elastomeric compounds for seismic isolators, characterized by a shear modulus ranging from 0.5 to 1.2 MPa at 100% shear strain and 20°C. The cyclic tests have been performed on small-size specimens, subjected to shear strain amplitudes and frequency of loading typical for elastomeric seismic isolators, at seven different air temperatures, ranging from 40 to −20°C. The effects of rubber crystallization due to prolonged exposure to low-temperatures have been also investigated. A finite element model for the evaluation of the temperature contour map inside a full-size elastomeric isolator exposed to low air temperatures has been also developed. In the paper, the experimental outcomes are compared with the modification factors provided by the current seismic codes to account for the temperature effects on the mechanical properties of elastomeric isolators.  相似文献   
7.
8.
The estimation of long-term sea level variability is of primary importance for a climate change assessment. Despite the value of the subject, no scientific consensus has yet been reached on the existing acceleration in observed values. The existence of this acceleration is crucial for coastal protection planning purposes. The absence of the acceleration would enhance the debate on the general validity of current future projections. Methodologically, the evaluation of the acceleration is a controversial and still open discussion, reported in a number of review articles, which illustrate the state-of-art in the field of sea level research. In the present paper, the well-proven direct scaling analysis approach is proposed in order to describe the long-term sea level variability at 12 worldwide-selected tide gauge stations. For each of the stations, it has been shown that the long-term sea level variability exhibits a trimodal scaling behaviour, which can be modelled by a power law with three different pairs of shape and scale parameters. Compared to alternative methods in literature, which take into account multiple correlated factors, this simple method allows to reduce the uncertainties on the sea level rise parameters estimation.  相似文献   
9.
This paper discusses a series of stress point algorithms for a breakage model for unsaturated granular soils. Such model is characterized by highly nonlinear coupling terms introduced by breakage‐dependent hydro‐mechanical energy potentials. To integrate accurately and efficiently its constitutive equations, specific algorithms have been formulated using a backward Euler scheme. In particular, because implementation and verification of unsaturated soil models often require the use of mixed controls, the incorporation of various hydro‐mechanical conditions has been tackled. First, it is shown that the degree of saturation can be replaced with suction in the constitutive equations through a partial Legendre transformation of the energy potentials, thus changing the thermomechanical state variables and enabling a straightforward implementation of a different control mode. Then, to accommodate more complex control scenarios without redefining the energy potentials, a hybrid strategy has been used, combining the return mapping scheme with linearized constraints. It is shown that this linearization strategy guarantees similar levels of accuracy compared with a conventional strain–suction‐controlled implicit integration. In addition, it is shown that the use of linearized constraints offers the possibility to use the same framework to integrate a variety of control conditions (e.g., net stress and/or water‐content control). The convergence profiles indicate that both schemes preserve the advantages of implicit integration, that is, asymptotic quadratic convergence and unconditional stability. Finally, the performance of the two implicit schemes has been compared with that of an explicit algorithm with automatic sub‐stepping and error control, showing that for the selected breakage model, implicit integration leads to a significant reduction of the computational cost. Such features support the use of the proposed hybrid scheme also in other modeling contexts, especially when strongly nonlinear models have to be implemented and/or validated by using non‐standard hydro‐mechanical control conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
This paper studies the chemo‐mechanics of cemented granular solids in the context of continuum thermodynamics for fluid‐saturated porous media. For this purpose, an existing constitutive model formulated in the frame of the Breakage Mechanics theory is augmented to cope with reactive processes. Chemical state variables accounting for the reactions between the solid constituents and the solutes in the pore fluid are introduced to enrich the interactions among the microstructural units simulated by the model (i.e., grains and cement bonds). Two different reactive processes are studied (i.e., grain dissolution and cement precipitation), using the chemical variables to describe the progression of the reactions and track changes in the size of grains and bonds. Finally, a homogenization strategy is used to derive the energy potentials of the solid mixture, adopting probability density functions that depend on both mechanical and chemical indices. It is shown that the connection between the statistics of the micro‐scale attributes and the continuum properties of the solid enables the mathematical capture of numerous mechanical effects of lithification and chemical deterioration, such as changes in stiffness, expansion/contraction of the elastic domain, and development of inelastic strains during reaction. In particular, the model offers an interpretation of the plastic strains generated by aggressive environments, which are here interpreted as an outcome of chemically driven debonding and comminution. As a result, the model explains widely observed macroscopic signatures of geomaterial degradation by reconciling the energetics of the deformation/reaction processes with the evolving geometry of the microstructural attributes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号