首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
地球物理   19篇
地质学   8篇
海洋学   3篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2000年   1篇
  1996年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1967年   1篇
  1962年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Summary The convection in a rapidly rotating electrically conducting, fluid horizontal layer of non-constant stratification, permeated by an inhomogeneous magnetic field, is studied. In this connection, a temperature model of the layer is constructed, which creates a structure such that part of the layer is unstably and a part stably stratified. The results obtained are applied to the conditions in the fluid Earth's core.
¶rt;m u m aa mn¶rt; u¶rt;uma , m um nm mamuuau u a¶rt;um ¶rt;¶rt; aum n. uaa nu m mna ¶rt; nu¶rt;um uu ma mm, nu m am mamuuum mau, a am — mau. mam unm ¶rt; aaua n, nu¶rt;u u¶rt; ¶rt; u.
  相似文献   
2.
Major-element, trace-element and isotopic compositions of approximately 1200 basalts (< 53 wt. % SiO2) from intra-oceanic island arcs have been compiled to assess the nature and possible sources of primitive island-arc basalts (IAB). The chemical characteristics of IAB are examined with reference to those of mid-ocean ridge basalts (MORB) and intraplate oceanic basalts (IPB). Major-element compositions of primitive [Mg(Mg +Fe2+) > 65] IAB and MORB are similar, but differ significantly from IPB. In general, IAB do not have higher Al2O3, lower TiO2 or a lack of Fe enrichment compared to primitive MORB but many do have greater K2O contents. Differences in major- and minor-element contents between more evolved IAB and MORB result from the dominance of plagioclase + olivine crystal fractionation in MORB magmas vs. clinopyroxene + olivine controlled fractionation in IAB suites. This difference in crystallization history may be related to the higher PH2O or greater depth of crystallization of IAB magmas compared to those inferred for MORB.IAB are characteristically enriched in large-ion-lithophile (LIL) elements and depleted in high-field-strength ions (e.g., Zr, Nb and Hf) relative to normal MORB (N-type) and IPB. The enrichment of some LIL elements (e.g., Sr, Rb, Ba and Pb) relative to the rare-earth elements in IAB is difficult to explain by simple partial melting alone and suggests a multistage petrogenesis involving an LIL-enriched component. Low abundances of high-field-strength ions in evolved IAB are explicable in terms of fractional crystallization, but the cause for consistently low abundances in primitive IAB remains problematic.Island-arc lavas contain greater concentrations of volatiles and have higher CO2H2O and Cl/F ratios than either MORB or IPB, suggesting involvement of a slab-derived volatile component. However, this is not consistent with 3He4He data which indicate that only near-trench volcanics have been significantly affected by dehydration of the oceanic crust.Sr-, Nd-, Pb- and O-isotopic data, in conjunction with the trace-element data, clearly indicate that IAB are derived from heterogeneous, LIL-depleted mantle sources most similar to those which give rise to enriched MORB (E-type). The marked shift towards higher 87Sr86Sr in IAB compared to oceanic lavas with similar 143Nd144Nd values cannot be explained simply by the addition of radiogenic Sr from the slab. Variable degrees of contamination from a crustally-derived sedimentary component is consistent with the isotopic and trace-element data from a number of arcs. However, the lack of correlation between LIL/REE ratios and more radiogenic isotopic ratios suggests that this enrichment/contamination process is complex. A multi-stage petrogenetic model involving subducted oceanic crust (± sediments), dehydration/volatile transfer, and partial melting of metasomatized mantle beneath island arcs is considered the most reasonable, although least constrained, method to generate a variety of primitive IAB.  相似文献   
3.
The Cenozoic Mormon Mountain Volcanic Field (MMVF) of northern Arizona is situated in the transition zone between the Basin and Range and the Colorado Plateau. It is composed of alkalic to sub-alkalic basalts and calcalkalic andesites, dacites, and rhyodacites. Despite their spatial and temporal association, the basalts and the calcalkalic suite do not seem to be co-genetic. The petrogenesis of primitive MMVF basalts can be explained as the result of different degrees of partial melting of a relatively homogenous, incompatible element-enriched peridotitic source. The variety of evolved basalt types was the result of subsequent fractional crystallization of olivine, spinel, and clinopyroxene from the range of primitive basalts. Crustal contamination seems to have occurred, but affected only the highly incompatible element abundances. The formation of MMVF calcalkalic rocks is most readily explained by small to moderate amounts of partial melting of an amphibolitic lower crust. This source is LREE-enriched but depleted in Rb and relatively unradiogenic Sr (87Sr/86Sr 0.7040). Calcalkalic rhyodacites may also be derived from andesitic parents by fractional crystallization. The overall petrogenesis of the MMVF complex is the result of intra-plate volcanism where mantle-derived magmas intrude and pass through thick continental crust.  相似文献   
4.
Velocity and suspension measurements in the logarithmic layer of hydraulically smooth turbulent tidal flow from the North Sea are reported. The data were not compatible with the assumption of Newtonian flow for the experimental seawater—clay suspension.Laboratory measurements were initiated with mud and seawater from the North Sea in which the boundary-layer structure of this two-phase flow was measured down into the viscous sublayer. The dilute seawater—clay suspension was a mixture of illite, kaolinite and chlorite minerals with concentrations less than 380 mg/l and exhibited turbulent drag reduction.By reviewing flow measurements of other authors it is suggested that turbulent drag reduction occurs on a geophysical scale if the flows transport cohesive sediments. It is proposed that drag reduction is caused by dynamic interaction between turbulent shear strain in the flow and deformation of aggregates.As a consequence, the values of the critical friction velocity u1 crit and of erosion rates must be reviewed for cohesive bottom materials. Normally they were obtained under the assumption of a Newtonian flow structure which is not applicable if the flow transports cohesive sediments.To detect the occurrence of drag reduction in geophysical boundary layers (hydraulically smooth), flow measurements must be performed down into the viscous sublayer. The adequate velocity sensors must have a diameter of ?1 mm.  相似文献   
5.
N.K. Bigalke  G. Rehder  G. Gust   《Marine Chemistry》2009,115(3-4):226-234
The dissolution of in-situ generated methane hydrate in undersaturated, synthetic seawater (S = 35) was investigated in a series of laboratory-based experiments at P-/T-conditions within the hydrate stability field. A controlled flow field was generated across the smooth hydrate surface to test if, in addition to thermodynamic variables, the dissolution rate is influenced by changing hydrodynamic conditions. The dissolution rate was found to be strongly dependent on the friction velocity, showing that hydrate dissolution in undersaturated seawater is a diffusion-controlled process. The experimental data was used to obtain diffusional mass transfer coefficients kd, which were found to correlate linearly with the friction velocity, u. The resulting kd/u-correlation allows predicting the flux of methane from natural gas hydrate exposures at the sediment/seawater interface into the bulk water for a variety of natural P, T and flow conditions. It also is a tool for estimating the rate of hydrate regrowth at locations where natural hydrate outcrops at the seafloor persist in contact with undersaturated seawater.  相似文献   
6.
Zusammenfassung Es werden die Wurzeln einer charakteristischen Gleichung für die Randbedingung der Diffusion des toroidalen magnetischen Störungsfeldes berechnet, das in dünner Schicht unterhalb der Grenze Kern — Mantel, als eine Folge von Störung der Winkelgeschwindigkeit dieser Schicht in Anwesenheit des magnetischen Dipolfeldes induziert wird. Die Wurzeln werden für verschiedene Werte des Verhältnisses der Leitfähigkeit des Erdmantels und Erdkerns ausgerechnet. Es wird gezeigt, dass das aus dem Milieu mit der elektrischen Leitfähigkeit in das Milieu mit elektrischer Leitfähigkeit m diffundierende toroidale magnetische Störungsfeld vom Werte m/<10–2 an von dem Verhältnis elektrischer Leitfähigkeiten beider Milieus unabhänging bleibt.  相似文献   
7.
Major and trace-element whole rock data, Nd and Sr isotopic data, and microprobe data have been collected from a suite of basanites, olivine nephelinites, and olivine melilite nephelinites from the Raton-Clayton volcanic field, New Mexico. Most of the lavas have geochemical characteristics that suggest they are primary upper mantle derived melts. The previously unreported occurrence of Type I and Type II ultramafic xenoliths in some of the lava flows supports this conclusion. All the lavas are strongly enriched in light REE, Sr, Ba, U, Th, and P2O5. 87Sr/86Sr ratios are 0.70394 to 0.70412 and 143Nd/144Nd ratios are equal to an epsilon value of +1.4; the data fall within the Nd-Sr correlation field. Trace-element modeling indicates that the lavas were last in equilibrium with a light-REE enriched mantle with a (La/Yb)N of two to nine. However, the Nd isotopic data indicate a source with a time integrated, chondritic normalized, Sm/Nd ratio of 1.01. To account for this discrepancy a metasomatic enrichment of the source is proposed. The timing of the enrichment event can only be constrained to less than 1 AE ago, and the isotopic composition of the premetasomatized source and the metasomatizing agent cannot be specified. However, geochemical constraints suggest a CO2-rich fluid enriched in incompatible elements as the likely metasomatizing agent  相似文献   
8.
The extrusive products of a Middle to Late Jurassic volcanic event occur throughout a wide area of southern South America. These volcanic rocks are associated in time and space with a series of NNW-trending grabens. The extension that produced the grabens began perhaps in the latest Triassic and continued throughout most of the Jurassic. The Middle to Late Jurassic volcanic rocks represent the culminating event of this period of extension.The Jurassic volcanic rocks described here are dominantly rhyolites and basalts, but flows of intermediate composition are also present. Major element geochemistry on a suite of samples taken from a west-east transect near 44°S latitude shows that these rocks are not related directly to convergent arc volcanism along the margin of South America, but are the products of a separate tectonic/magmatic event that involved significant crustal anatexis.The extension and related volcanism directly preceded the opening of the Rocas Verdes marginal basin along the western margin of Chile and may have led to the initial separation of South America and South Africa. As such, the Middle-to-Late Jurassic extension and volcanism heralded the breakup of part of Gondwanaland.  相似文献   
9.
The intrinsic oxygen fugacities of homogeneous, inclusion-free, megacryst ilmenites from the Frank Smith, Excelsior, Sekameng and Mukorob kimberlite pipes in southern Africa, and the alnöitic breccia in the Solomon Islands have been determined. Similar measurements have been made of the type A and B spinel peridotites from San Carlos in Arizona. The type A peridotites are characterised by oxygen fugacities close to the iron-wüstite buffer, similar to those of equivalent peridotite specimens from other continental and island arc environments. In strong contrast, the type B peridotites and all of the ilmenite megacrysts range between the oxygen fugacities defined by the nickelnickel oxide and fayalite-magnetite-quartz buffers. A close relationship between type B peridotites, oxidized metasomatizing fluids in the upper mantle and oxidized, silicaundersaturated magma types is suggested. It is unlikely that a solid elemental carbon phase can be an equilibrium crystallization product of kimberlite magmas if the ilmenite megacrysts represent the redox state of kimberlite melts. The ultimate source of the oxidizing fluids and the development of such a wide dispersion (>4 orders of magnitude) in oxygen fugacities of the upper mantle is not clear, but may involve recycled lithosphere, fluids from the lower mantle or result from the relatively rapid diffusion of H2, compared with other potential volatile species, in the mantle.  相似文献   
10.
Summary The convection in a rapidly rotating, electrically conducting, horizontal fluid layer, non-constantly stratified and penetrated by an inhomogeneous magnetic field, is studied. The convection is investigated for various ratios of the thickness of the stable and unstable stratified part of the layer. The thermal model of the layer, as well as the analysis of the results have been treated with regard to the physical conditions in the liquid core of the Earth.
am u¶rt;m u m aa mn¶rt; u¶rt;uma nm mamuuau, nua ¶rt;¶rt; aum n. u u¶rt;m ¶rt; a mu m u mu u mu mamuuuao amu . ua ¶rt; , a u aau mam, n¶rt;a anm uuu u u¶rt; ¶rt; u.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号