首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  国内免费   1篇
  完全免费   6篇
  地质学   14篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1994年   2篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
三叠纪牙形石的古环境与古地理意义   总被引:6,自引:4,他引:2       下载免费PDF全文
牙形石广泛分布于寒武纪至三叠纪的海洋里。三叠纪牙形石的种类、形态、大小和产出频率受海水盐度、深度、温度和水动力条件等因素控制,不同的牙形石生态特征即牙形石相反映不同的沉积环境,所以,根据三叠纪牙形石相和牙形石特征属种的丰度,不但可区分三叠纪不同的沉积相区(台地相区、台地边缘相区、盆地相区),恢复三叠纪古地理面貌,而且可划分出牙形石生物地理区。中国早三叠世牙形石归属特提斯生物大区亚洲生物省,并可进一步划分出两个生物亚省和若干生态区。  相似文献
2.
The “Falang Formation“ of western Guizhou was previously called the “Halobia Bed“ and considered to be Ladinian in age. It was subdivided upward into the Zhuganpo, Laishike and Longchang members based on ammonites and the Trachyceras multitubertulatum Zone of the Longchang Member was put in the Lower Camian. Here in the present paper, 4 genera and 9 species of ammonites and I nautiloid genus and species collected from the upper part of the “Falang Formation“ (i.e. the Wayao Formation used in this paper, equivalent to the Laishike Member from Guanling and Zhenfeng counties are described. The geological and geographical distribution of these cephalopods, as well as the co-existing conodonts, put the Wayao Formation to the late early Camian.  相似文献
3.
杨守仁  郝维城 《地质论评》2002,48(6):586-592
本文描述了采自贵州省六枝县郎岱剖面“法郎组”的一些牙形石,该牙形石群主要由Paragondolella polygnthiformis,P.maantangensis,P.tadpole,P.navicula navicula,P.foliata foliata,P.foliata inclinata,P.jiangyouensis,P.langdaiensis Yang sp.nov.等组成,自下而上可识别出3个牙形石带,竹杆坡组Pargondolella polynathiformis-Paragondolella maantangensis组合带、Paragondolella polygnathiformis-Paragondolella tadpole组合带,瓦窑组Pragondolella polygnathiformis带,因此,该剖面“法郎组”的时代,不仅上部(当前的瓦窑组),而且下部(当前的竹杆坡组),都是晚三叠世卡尼期的。  相似文献
4.
中国三叠纪牙形石的古生物地理分区   总被引:3,自引:0,他引:3  
本文根据中国三叠纪牙形石的地理分布、属种的分异度和特征属种的丰度,将中国三叠纪牙形石归属Kozur(1973)的特提斯生物大区亚洲生物省,在早-中三叠世,进一步二分为喜马拉雅生物亚省和华夏特提斯生物亚省,后者三分为西华夏特提斯生态区、东华夏特提斯生态区和右江生态区。在晚三叠世时,右江生态区已不复存在。  相似文献
5.
Abstract: The Middle Triassic Panxian fauna is a physical marker and representative record of the rapid recovery of the Triassic marine ecosystem following the Early Triassic stagnant stage after the end-Permian mass extinction. Ten marine reptile taxa have been found from the 1.82–2.10 m-thick fossiliferous level in the Upper Member of the Guanling Formation, which can be subdivided into three marine reptile beds through the analysis on the stratigraphic distributions of fossil reptiles. The Lower Reptile Bed yields the sauropterygians Placodus inexpectatus Jiang et al., 2008 and Lariosaurus hongguoensis Jiang et al., 2006, the ichthyopterygians Xinminosaurus catactes Jiang et al., 2008 and Phalarodon cf. Phalarodon fraasi Merriam, 1910, associated with Mixosaurus panxianensis Jiang et al., 2006, representing a stage of predominance of durophagous taxa. In this bed, the large complete skeletons may reach up to 2.3 m in length, and lithofacies and chemostratigraphic analyses indicate a relatively deep carbonate platform with an oxic water environment near the bottom, as well as a rising sea level. The Middle Reptile Bed yields the sauropterygian Nothosaurus yangjuanensis Jiang et al., 2006 and the archosaur Qianosuchus mixtus Li et al., 2006, associated with Mixosaurus panxianensis Jiang et al., 2006. The fossils in this bed are characterized by its pincering dentition and large overall body size, with the largest possibly exceeding 3 m in length. This bed might represent a time of deepest basin with relatively anoxic condition near the bottom. The Upper Reptile Bed yields the sauropterygians Wumengosaurus delicatomandibularis Jiang et al., 2008, Keichousaurus sp., the protorosaur Dinocephalosaurus orientalis Li, 2003, and the ichthyopterygian Mixosaurus panxianensis Jiang et al., 2006. In this bed, reptilian taxa characterized by suction feeding appeared, and most are less than 1 m long. This bed corresponds to a period of decreasing water depth.  相似文献
6.
Abstract: Saurichthys dawaziensis sp. nov., from the third member of the Gejiu Formation (Anisian of Middle Triassic) in the vicinity of Luoping, Yunnan Province, is a small to medium- sized saurichthyid fish. It is characterized by the efferent pseudobranchial arteries penetrating on the parasphenoid and the mandible sensory canal with a branch in the angular. The new species is more derived than the Lower Triassic species in having a relatively narrow postorbital region, short preopercular, single ossification of the sclerotic ring, small haemal arches between the pelvic fins and the anal fin without ossified spines, and in the absence of quadratojugal. It is more primitive than the Middle and Upper Triassic Saurichthys in having fringing fulcra and numerous segments in the unpaired fins, and the presence of both prae- and post-zygapophyses in the neural arches. Some anatomic changes related to the vertebral column and unpaired fins of the genus are also discussed.  相似文献
7.
贵州晚二叠世—早三叠世介形虫动物群的演变   总被引:2,自引:0,他引:2       下载免费PDF全文
郝维城 《地质论评》1994,40(1):87-92
贵州有许多二叠系至三叠系的连续剖面,沉积类型多样,生物化石丰富,其中介形虫化石不但类型多,数量也很丰富,保存完好,发展阶段明显。即长兴阶介形虫类型多,数量也多,壳饰复杂,以具瘤刺的为多,早三叠世早期介形虫贫乏,数量及类型都不多,壳饰以光滑或具微细纹饰的为主。根据这些介形虫类型和数量的变化,以及壳饰特征的研究,表明二叠系与三叠系界线附近的介形虫动物群也同其它生物一样发生了重要变化。为二叠-三叠系界线  相似文献
8.
After a slow recovery from the end-Permian extinction during the Early Triassic and rapid radiation in the Middle Triassic, evolution of organisms reached a new peak phase in the Late Triassic. The Guanling Biota from the Wayao Member (conodont Paragondolella polygnathiformis Zone), Falang Formation, Xinpu, Guanling County, Guizhou Province, southwestern China corresponds to this peak that marks the full recovery from the end-Permian extinction of marine ecosystems. The biota is of high diversity, containing well preserved and completely articulated skeletons of vertebrates comprising marine reptiles, fishes, and invertebrates including crinoids, ammonites, bivalves, and other fossils, and is one of the best examples of marine ecosystem records in life history. The fossil marine reptiles and crinoids are most significant in this biota, especially the marine reptiles, which provide an important link between the Triassic Pacific and Tethys, and between Triassic basal forms and the Jurassic-Cretaceous marine top predators. The most remarkable fossils are the large completely articulated ichthyosaur skeletons up to and more than 10 m, and the first recorded thalattosaurs and placodonts in China. Following our review, of the 17 named reptilian taxa the eight listed here are considered to be valid: three ichthyosaurs (Qianichthyosaurus zhoui Li, 1999; Guizhouichthyosaurus tangae Cao and Luo in Yin et al., 2000, Guanlingsaurus liangae Yin in Yin et al., 2000), three thalattosaurs (Anshunsaurus huangguoshuensis Liu, 1999, Xinpusaurus suni Yin in Yin et al., 2000, Xinpusaurus kohi Jiang et al., 2004), and two placodonts (Sinocyamodus xinpuensis Li, 2000, Psephochelys polyosteoderma Li and Rieppel, 2002). Mixosaurus guanlingensis Cao in Yin et al., 2000 might be a junior synonym of Qianichthyosaurus zhoui Li, 1999, and Cymbospondylus asiaticus Li and You, 2002 and Panjiangsaurus epicharis Chen and Cheng, 2003 might be junior synonyms of Guizhouichthyosaurus tangae Cao and Luo in Yin et al., 2000. It needs to re-describe the holotypes after a complete preparation for clarifying the taxonomic status of Typicusichthyosaurus tsaihuae Yu in Yin et al., 2000, Xinpusaurus bamaolinensis Cheng, 2003, Neosinosaurus hoangi (Zhou in Yin et al., 2000), Wayaosaurus geei Zhou in Yin et al., 2000, Wayaosaurus bellus Zhou in Yin et al., 2000 and Placochelys ? minutus Yin and Luo in Yin et al., 2000.  相似文献
9.
对贵州关岭晚三叠统法郎组瓦窑段底部的毛凹剖面系统地采集了105个岩石样品,测定了样品中的36种化学元素含量。作者对它们进行元素富集因子(EF)分析、R型聚类分析、R型因子分析、元素和氧化物的含量与Al2O3的含量比值以及δCe在剖面中垂向变化的分析,讨论了元素含量变化的制约因素、沉积物的来源、古海洋氧化还原条件的变化、关岭动物群的埋藏环境。结果表明:研究的5.2 ~17.7 m段剖面地层以陆源碎屑和生物碎屑混合沉积为主,沉积物来源于陆壳,而不是火山和热液的来源,其沉积的氧化还原条件多次反复变化;元素的含量变化主要受陆源物质、氧化还原条件、生物碎屑以及成岩作用控制;从元素地层学角度将所研究的剖面段从下到上可划分为4层,第1层至第4层元素对比值曲线呈现出平缓波动—频繁波动—平缓波动的周期性变化特征;该段偏还原的环境对海百合及海生爬行动物化石的保存和埋藏起了良好的作用。  相似文献
10.
On the basis of existing conodont data, the authors have studied the Late Permian-Early Triassic conodonts of different forms and biofacies in detail. Five conodont biofacies are recognized, from shallow to deep waters 1. Hindeodus conodont biofacies, 2. Pachycladina-Parachi rognathus conodont biofacies, 3. Gondolella -Hindeodus conodont biofacies, 4. Gondolella-Neospathodus conodont biofacies, and 5. Xaniognathus conodont biofacies. Considering the temporal and spatial changes of these conodont biofacies, 3 conodont bloprovinces have been divided. In light of the biofacies changes of each bioprovince, the authors also discuss, in this paper, the regularity of transgression-regression cycles of eastern Tethys and their possible relation to the mass biotic alternation.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号