首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   32篇
  国内免费   19篇
测绘学   23篇
大气科学   15篇
地球物理   144篇
地质学   275篇
海洋学   27篇
天文学   51篇
综合类   8篇
自然地理   44篇
  2022年   14篇
  2021年   19篇
  2020年   21篇
  2019年   24篇
  2018年   45篇
  2017年   43篇
  2016年   41篇
  2015年   23篇
  2014年   45篇
  2013年   58篇
  2012年   23篇
  2011年   34篇
  2010年   21篇
  2009年   21篇
  2008年   20篇
  2007年   14篇
  2006年   8篇
  2005年   12篇
  2004年   8篇
  2003年   9篇
  2002年   9篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   8篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1960年   1篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
1.

Prediction of true classes of surficial and deep earth materials using multivariate spatial data is a common challenge for geoscience modelers. Most geological processes leave a footprint that can be explored by geochemical data analysis. These footprints are normally complex statistical and spatial patterns buried deep in the high-dimensional compositional space. This paper proposes a spatial predictive model for classification of surficial and deep earth materials derived from the geochemical composition of surface regolith. The model is based on a combination of geostatistical simulation and machine learning approaches. A random forest predictive model is trained, and features are ranked based on their contribution to the predictive model. To generate potential and uncertainty maps, compositional data are simulated at unsampled locations via a chain of transformations (isometric log-ratio transformation followed by the flow anamorphosis) and geostatistical simulation. The simulated results are subsequently back-transformed to the original compositional space. The trained predictive model is used to estimate the probability of classes for simulated compositions. The proposed approach is illustrated through two case studies. In the first case study, the major crustal blocks of the Australian continent are predicted from the surface regolith geochemistry of the National Geochemical Survey of Australia project. The aim of the second case study is to discover the superficial deposits (peat) from the regional-scale soil geochemical data of the Tellus Project. The accuracy of the results in these two case studies confirms the usefulness of the proposed method for geological class prediction and geological process discovery.

  相似文献   
2.
Recession of high‐mountain glaciers in response to climatic change frequently results in the development of moraine‐dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 km2) receding valley glacier in Mt. Everest (Sagarmatha) National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice‐contact moraine‐dammed lake to develop. The lake had a maximum volume of 5.5 × 105 m3 and drained as a result of breaching of the terminal moraine. An estimated 1.3 × 105 m3 of material was removed from the terminal moraine during breach development. Numerical dam‐breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was used to investigate a range of moraine‐dam failure scenarios. Reconstructed outflow peak discharges, including failure via overtopping and piping mechanisms, are in the range 146–2200 m3 s‐1. Results from two‐dimensional hydrodynamic GLOF modelling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 m s‐1 within 700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming a 300 m long and 100 m wide debris fan originating at the breach exit. moraine‐dam. These results also suggest that inundation of the entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous moraine‐dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
3.
Ship-generated waves and return currents are capable of re-suspending significant quantities of bottom and bank sediments.However,most of the previous studies done on the subject do not show how and where sediment is re-suspended by the wakes and the directions of net transport.In this paper,a 3D numerical model based on hydro-sedimentary coupling is presented to search the relationship between the sediment movement,and the pattern of ship-generated waves around and far away from the vessel and the return currents around the ships.The hydrodynamic model is based on 3D Navier-Stokes equations including the standard k-ε model for turbulence processes,and the sediment transport model is based on a 3D equation for the re-suspended sediment transport.The computation results show that the areas of sediment concentration and transport(whether by resuspension or by the bedload) depend mainly on the position,the speed of the ship in the waterways,the kinematics of ship-generated waves and on the return flows.Thus,a map of sediment distribution and the modes of sediment transport generated by the passage of the ship are presented.  相似文献   
4.
The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.  相似文献   
5.
Tertiary volcanic rocks in northwestern Firoozeh, Iran (the Meshkan triangular structural unit), constitute vast outcrops (up to 250 km2) of high-Mg basaltic andesites to dacites that are associated with high-Nb hawaiites and mugearites. Whole-rock 40Ar/39Ar ages show a restricted range of 24.1 ± 0.4–22.9 ± 0.5 Ma for the volcanic rocks. The initial ratios of 87Sr/86Sr and 143Nd/144Nd vary from 0.703800 to 0.704256 and 0.512681 to 0.512877, respectively, in the high-Mg basaltic andesites–dacites. High-Th contents (up to 11 ppm) and Sr/Y values (27–100) and the isotopic composition of the subalkaline high-Mg basaltic andesites–dacites indicate derivation from a mantle modified by slab and sediment partial melts. Evidence such as reverse zoning and resorbed textures and high Ni and Cr contents in the evolved samples indicate that magma mixing with mafic melts and concurrent fractional crystallization lead to the compositional evolution of this series. The high-Nb hawaiites and mugearites, by contrast, have a sodic alkaline affinity and are silica undersaturated; they are also enriched in Nb (up to 47 ppm) and a wide range of incompatible trace elements, including LILE, LREE, and HFSE. Geochemistry and Sr–Nd isotopic compositions of the high-Nb hawaiites and mugearites suggest derivation from a mantle source affected by lower degrees of slab melts. Post-orogenic slab break-off is suggested to have prompted the asthenospheric upwelling that triggered partial melting in mantle metasomatized by slab-derived melts.  相似文献   
6.
The Tafresh granitoids are located at the central part of the Urumieh-Dokhtar Magmatic Arc(UDMA) in Iran. These rocks, mainly consisting of diorite and granodiorite, were emplaced during the Early Miocene. They are composed of varying proportions of plagioclase + K-feldspar + hornblende ± quartz ± biotite. Discrimination diagrams and chemical indices of amphibole phases reveal a calc-alkaline affinity and fall clearly in the crust-mantle mixed source field. The estimated pressure, derived from Al in amphibole barometry, is approximately 3 Kb. The granitoids are I-type, metaluminous and belong to the calc-alkaline series. They are all enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements and display geochemical features typical of subduction-related calc-alkaline arc magmas. Most crystal size distribution(CSD) line patterns from the granitoids show a non-straight trend which points to the effect of physical processes during petrogenesis.The presence of numerous mafic enclaves, sieve texture and oscillatory zoning along with the CSD results show that magma mixing in the magma chamber had an important role in the petrogenesis of Tafresh granitoids. Moreover, the CSD analysis suggests that the plagioclase crystals were crystallized in a time span of less than 1000 years, which is indicative of shallow depth magma crystallization.  相似文献   
7.
Ras Abda plutonic suite, North Eastern Desert of Egypt, consists predominantly of Neoproterozoic calc-alkaline older granites. Minor exposures of pink microgranite are occurring along Wadi Ras Abda within the older granites. Previous studies on this area demonstrated that the microgranite is altered in some parts and contains anomalous concentrations of rare metal elements (Zr, Th, and U). These altered and mineralized zones are re-assessed using field observations, chemical analysis, and by the application of various transmitted light and electron microscopic techniques. The rare metals exist as mineral segregation grew freely into open cavities of the microgranite and concordant with the NNE strike-slip fault movement. The mineralized zones contain an assemblage of secondary magnetite, zircon, uranothorite, columbite-(Mn), fergusonite-(Y), and allanite-(Ce). The extreme abundance of zircon in the mineralized zone, along with other evidence, indicates a hydrothermal origin of this zircon together with associated rare metals. The geochemical investigation and mass balance calculations revealed extreme enrichment of Zr, Th, U, Y, Nb, Ta, and REE. Post-magmatic hydrothermal alterations resulted in such pronounced chemical and mineralogical heterogeneity. The hydrothermal fluids are thought to be oxidizing, alkaline and of medium temperature (>?250 °C). The average contents of the elements Zr (1606 ppm), Th (1639 ppm), U (306 ppm), Nb (955 ppm), and REE (1710 ppm) in the mineralized microgranite reach sub-economic levels and could be a potential source of these elements.  相似文献   
8.
Qatar economy has been growing rapidly during the last two decades during which waste generation and greenhouse gas emissions increased exponentially making them among the main environmental challenges facing the country. Production of biochar from municipal solid organic wastes (SOWs) for soil application may offer a sustainable waste management strategy while improving crop productivity and sequestering carbon. This study was conducted to (1) investigate the physicochemical parameters of biochars for SOW, (2) select the best-performing biochars for soil fertility, and (3) evaluate the potential benefits of these biochars in lowering greenhouse gases (GHGs) during soil incubation. Biochars were produced from SOW at pyrolysis temperatures of 300–750 °C and residence times of 2–6 h. Biochars were characterized before use in soil incubation to select the best-performing treatment and evaluation of potential GHG-lowering effect using CO2 emission as proxy. Here, soil–biochar mixtures (0–2%w/w) were incubated in greenhouse settings for 120 days at 10% soil moisture. Soil properties, such as pH, EC, TC, and WHC, were significantly improved after soil amendment with biochar. Two biochars produced from mixed materials at 300–500 °C for 2 h and used at 0.5–1% application rate performed the best in enhancing soil fertility parameters. A significant decrease in CO2 emission was observed in vials with soil–biochar mixtures, especially for biochars produced at 500 °C compared the corresponding raw materials which exhibited an exponential increase in the CO2 emission. Hence, application of biochar to agricultural soils could be beneficial for simultaneously improving soil fertility/crop productivity while sequestering carbon, thereby reducing anthropogenic emissions of GHGs.  相似文献   
9.
Human‐induced land use/land cover (LULC) changes are among the most important processes that shape the dynamics of the earth’s surface. This phenomenon, which is occurring at an astonishing rate, and its consequential environmental impacts have become an important area of research for scientists.Therefore, a wide range of methods and models have been developed to detect and predict these alterations, among which cellular automata (CA) models such as the CA‐Markov model, due to their affinity to geographic information system (GIS) and remote sensing (RS), are appropriate for detailed resolution modelling and simulating dynamic spatial processes. In Iran, the district of Ravansar has undergone severe LULC changes recently, thus to take the necessary precautions, decision‐makers need to predict and determine the extent of these changes. In this study, using spatial analysis methods the LULC changes in Ravansar were investigated from 1992 to 2015. Subsequently, the CA‐Markov model was applied to simulate the spatial pattern changes of LULC until 2030. Our results indicated that from 1992 to 2015, this region has witnessed a noticeable increase in the areas of the built‐up and agricultural lands (both aquatic and non‐aquatic), resulting in the decrease of the gardens, range, and bare lands. The simulated LULC map showed that this trend will continue due to more urbanization and development of agricultural areas.  相似文献   
10.
Different techniques have been used to discuss the existence of significant relation between the El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). Various studies present their interaction and influence on the natural disasters (i.e. drought, flood, etc.) over large parts of the globe. This study uses a Markov chain method to investigate the relation between the ENSO and IOD for the period of 62 years (1950–2011) and aggregates their influence on the occurrence of floods in Pakistan. Both data sets show similarities in the formation of transition matrices and expected number of visits from one state to another. The strong values of 2-dimensional correlation and high self-communication of the transition states confirm the existence of a possible relation between ENSO and IOD data. Moreover, significant values of dependency and stationary test endorse the applicability of the Markov chain analyses. The independent analysis shows that strong events of both data sets are co-occurred in the same flood years. During the study period maximum number of floods was observed during summer monsoon season. However, further analysis shows that after 1970, Pakistan observed the highest percentage of floods occurred per year during El Nino, Non-ENSO and positive IOD years. These observations and results demonstrate that climate variability especially ENSO and IOD should be incorporated into disaster risk analyses and policies in Pakistan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号