首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1916篇
  免费   101篇
  国内免费   20篇
测绘学   84篇
大气科学   152篇
地球物理   703篇
地质学   672篇
海洋学   153篇
天文学   125篇
综合类   9篇
自然地理   139篇
  2022年   12篇
  2021年   22篇
  2020年   49篇
  2019年   34篇
  2018年   60篇
  2017年   51篇
  2016年   80篇
  2015年   71篇
  2014年   70篇
  2013年   115篇
  2012年   89篇
  2011年   117篇
  2010年   101篇
  2009年   122篇
  2008年   98篇
  2007年   74篇
  2006年   67篇
  2005年   45篇
  2004年   42篇
  2003年   51篇
  2002年   29篇
  2001年   49篇
  2000年   29篇
  1999年   34篇
  1998年   26篇
  1997年   28篇
  1996年   24篇
  1995年   16篇
  1994年   18篇
  1993年   12篇
  1992年   17篇
  1990年   14篇
  1989年   15篇
  1988年   19篇
  1987年   12篇
  1986年   21篇
  1985年   22篇
  1984年   18篇
  1983年   26篇
  1982年   21篇
  1981年   18篇
  1980年   15篇
  1979年   18篇
  1978年   13篇
  1977年   14篇
  1976年   13篇
  1975年   17篇
  1973年   14篇
  1972年   10篇
  1969年   9篇
排序方式: 共有2037条查询结果,搜索用时 34 毫秒
1.
When the observation of small headwater catchments in the pre-Alpine Alptal valley (central Switzerland) started in the late 1960s, the researchers were mainly interested in questions related to floods and forest management. Investigations of geomorphological processes in the steep torrent channels followed in the 1980s, along with detailed observations of biogeochemical and ecohydrological processes in individual forest stands. More recently, research in the Alptal has addressed the impacts of climate change on water supply and runoff generation. In this article, we describe, for the first time, the evolution of catchment research at Alptal, and present new analyses of long-term trends and short-term hydrologic behaviour. Hydrometeorological time series from the past 50 years show substantial interannual variability, but only minimal long-term trends, except for the ~2°C increase in mean annual air temperature over the 50-year period, and a corresponding shift towards earlier snowmelt. Similar to previous studies in larger Alpine catchments, the decadal variations in mean annual runoff in Alptal's small research catchments reflect the long-term variability in annual precipitation. In the Alptal valley, the most evident hydrological trends were observed in late spring and are related to the substantial change in the duration of the snow cover. Streamflow and water quality are highly variable within and between hydrological events, suggesting rapid shifts in flow pathways and mixing, as well as changing connectivity of runoff-generating areas. This overview illustrates how catchment research in the Alptal has evolved in response to changing societal concerns and emerging scientific questions.  相似文献   
2.
While there are extensive macro‐ and microfossil records of a range of plants and animals from the Quaternary, earthworms and their close relatives amongst annelids are not preserved as fossils and therefore the knowledge of their past distributions is limited. This lack of fossils means that clitellate worms (Annelida) are currently underused in palaeoecological research, even though they can provide valuable information about terrestrial and aquatic environmental conditions. Their DNA might be preserved in sediments, which offers an alternative method for detection. Here we analyse lacustrine sediments from lakes in the Polar Urals, Arctic Russia, covering the period 24 000–1300 cal. a BP, and NE Norway, covering 10 700–3300 cal. a BP, using a universal mammal 16S rDNA marker. While mammals were recorded using the marker (reindeer was detected twice in the Polar Urals core at 23 000 and 14 000 cal. a BP, and four times in the Norwegian core at 11 000 cal. a BP and between 3600–3300 cal. a BP), worm extracellular DNA ‘bycatch’ was rather high. In this paper we present the first reported worm detection from ancient DNA. Our results demonstrate that both aquatic and terrestrial clitellates can be identified in late‐Quaternary lacustrine sediments, and the ecological information retrievable from this group warrants further research with a more targeted approach.  相似文献   
3.
Atacama Large Millimetre/sub-millimetre Array(ALMA) observations of CO(1–0) and CO(2–1) emissions from the circumstellar envelope of the asymptotic giant branch(AGB) star EP Aqr have been made with four times better spatial resolution than previously available. They are analysed with emphasis on the de-projection in space of the effective emissivity and flux of matter using as input a prescribed configuration of the velocity field, assumed to be radial. The data are found to display an intrinsic axisymmetry with respect to an axis making a small angle with respect to the line of sight. A broad range of wind configurations, from prolate(bipolar) to oblate(equatorial) has been studied and found to be accompanied by significant equatorial emission. Qualitatively, the effective emissivity is enhanced near the equator to produce the central narrow component observed in the Doppler velocity spectra and its dependence on star latitude generally follows that of the wind velocity with the exception of an omni-present depression near the poles. In particular, large equatorial expansion velocities produce a flared disc or a ring of effective emissivity and mass loss. The effect on the determination of the orientation of the star axis of radial velocity gradients, and possibly competing rotation and expansion in the equatorial disc, is discussed. In general,the flux of matter is found to reach a broad maximum at distances of the order of 500 AU from the star.Arguments are given that may be used to favour one wind velocity distribution over another. As a result of the improved quality of the data, a deeper understanding of the constraints imposed on morphology and kinematics has been obtained.  相似文献   
4.
5.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
6.
The western part of the Bohemian Massif hosts an intersection of two regional fault zones, the SW-NE trending Oh?e/Eger Graben and the NNW-SSE trending Mariánské Lázně Fault, which has been reactivated several times in the geological history and controlled the formation of the Tertiary Cheb Basin. The broader area of the Cheb Basin is also related to permanent seismic activity of ML 3+ earthquake swarms. The Eastern Marginal Fault of the Cheb Basin (northern segment of the Mariánské Lázně Fault) separates the basin sediments and underlying granites in the SW from the Kru?né Hory/Erzgebirge Mts. crystalline unit in the NE. We describe a detailed geophysical survey targeted to locating the Eastern Marginal Fault and determining its geometry in the depth. The survey was conducted at the Kopanina site near the Nový Kostel focal zone, which shows the strongest seismic activity of the whole Western Bohemia earthquake swarm region. Complex geophysical survey included gravimetry, electrical resistivity tomography, audiomagnetotellurics and seismic refraction. We found that the rocks within the Eastern Marginal Fault show low resistivity, low seismic velocity and density, which indicates their deep fracturing, weathering and higher water content. The dip of the fault in shallow depths is about 60° towards SW. At greater depths, the slope turns to subvertical with dip angle of about 80°. Results of geoelectrical methods show blocky fabric of the Cheb Basin and deep weathering of the granite bedrock, which is consistent with geologic models based on borehole surveys.  相似文献   
7.
8.
Macuda  Jan  Baran  Paweł  Wagner  Marian 《Natural Resources Research》2020,29(6):3841-3856
Natural Resources Research - Catastrophic cases of methane explosion during exploratory drilling within the Be?chatów ortholignite deposit have led to testing for methane in other Polish...  相似文献   
9.
10.
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号