首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1175篇
  免费   77篇
  国内免费   18篇
测绘学   28篇
大气科学   88篇
地球物理   348篇
地质学   402篇
海洋学   97篇
天文学   176篇
综合类   5篇
自然地理   126篇
  2023年   4篇
  2022年   3篇
  2021年   23篇
  2020年   31篇
  2019年   22篇
  2018年   40篇
  2017年   35篇
  2016年   51篇
  2015年   53篇
  2014年   41篇
  2013年   76篇
  2012年   66篇
  2011年   70篇
  2010年   62篇
  2009年   77篇
  2008年   79篇
  2007年   69篇
  2006年   56篇
  2005年   51篇
  2004年   49篇
  2003年   34篇
  2002年   32篇
  2001年   20篇
  2000年   13篇
  1999年   10篇
  1998年   16篇
  1997年   10篇
  1996年   15篇
  1995年   10篇
  1994年   9篇
  1993年   11篇
  1992年   12篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   9篇
  1986年   7篇
  1985年   14篇
  1984年   6篇
  1983年   12篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   8篇
  1978年   9篇
  1977年   6篇
  1976年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有1270条查询结果,搜索用时 46 毫秒
1.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
2.
3.
Gabda  Darmesah  Tawn  Jonathan  Brown  Simon 《Natural Hazards》2019,98(3):1135-1154
Natural Hazards - The aim of this paper is to set out a strategy for improving the inference for statistical models for the distribution of annual maxima observed temperature data, with a...  相似文献   
4.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
5.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   
6.
Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.  相似文献   
7.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
8.
Transient storage of floodwaters in aquifers is known to attenuate peak flows in rivers and drive subsurface dissolution. Transient aquifer storage could be enhanced in watersheds overlying karst aquifers where caves facilitate surface and groundwater exchange. Few studies, however, have examined controls on, or magnitudes of, transient aquifer storage or flood peak attenuation in karstic watersheds. Here we evaluate flood peak attenuation with multiple linear regression analyses of 10 years of river and groundwater data from the Suwannee River, which flows over the karstic upper Floridan aquifer in north-central Florida and experiences frequent flooding. Regressions show antecedent river stage exerts the dominant control on magnitudes of transient aquifer storage, with recharge and time to peak having secondary controls. Specifically, low antecedent stages result in larger magnitudes of transient aquifer storage and thus greater flood attenuation than conditions of elevated antecedent stage. These findings suggest subsurface weathering, including cave formation and enlargement, caused by transient aquifer storage could occur on a more frequent basis in aquifers where groundwater table elevation is lowered due to anthropogenic or climatic influences. Our work also shows that measures of groundwater table elevation prior to an event could be used to improve predictive flood models. © 2018 John Wiley & Sons, Ltd.  相似文献   
9.
Wildfires represent one of the largest disturbances in watersheds of the Intermountain West. Yet, we lack models capable of predicting post-wildfire impacts on downstream ecosystems and infrastructure. Here we present a novel modeling framework that links new and existing models to simulate the post-wildfire sediment cascade, including spatially explicit predictions of debris flows, storage of debris flow sediment within valleys, delivery of debris flow sediment to active channels, and the downstream routing of sediment through river networks. We apply the model to sediment dynamics in Clear Creek watershed following the 2010 Twitchell Canyon Fire in the Tushar Mountains of southern Utah. The debris flow generation model performed well, correctly predicting 19 out of 20 debris flows from the largest catchments, with only four false positives and two false negatives at observed rainfall intensities. In total, the model predicts the occurrence of 160 post-wildfire debris flows across the Clear Creek watershed, generating more than 650 000 m3 of sediment. Our new storage and delivery model predicts the vast majority of this sediment is stored within valleys, and only 13% is delivered to the river network. The sediment routing model identifies numerous sediment bottlenecks within the network, which alter transport dynamics and may be hotspots for aggradation and aquatic habitat alteration. The volume of sediment exported from the watershed after seven years of simulation totals 17% of that delivered, or 2% of the total generated debris flow sediment. In the case of the Twitchell Canyon Fire, this highlights that significant post-wildfire sediment volumes can be stored in valleys (87%) and within the stream network (11%). Finally, we discuss useful insights that can be gleaned from the model framework, as well as the limitations and need for more monitoring and theory development in order to better constrain essential inputs, process rates, and morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
10.
During the 1990s, the township of Pōkeno was held up as an example of a declining rural Aotearoa/New Zealand. By‐passed from the national state highway, it lost its status as a service hub and drastic measures were introduced to revitalise the town, including renaming the town “ Jenniferann.com .” Pōkeno has since undergone an unlikely transformation, with foreign investment and its location within an extended Auckland commuter zone meaning that the township has grown exponentially. This article describes the transformation of Pōkeno and uncovers what has been missing from discussions about Pōkeno's reinvention, namely, the place of mana whenua.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号