首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
测绘学   1篇
地质学   4篇
  2014年   1篇
  2009年   2篇
  1991年   1篇
  1983年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Geochemical characteristics of Desur-type basalt flows in the southern and southwestern part of Belgaum in Karnataka, India have been investigated to understand their petrogenesis. The basalts are compact, hard, massive, and show characteristic microporphyritic textures with abundant well-twinned and un-twinned plagioclase phenocrysts and minor clinopyroxene set in a fine-grained groundmass consisting of plagioclase, clinopyroxene, glass and Fe-Ti oxides. Thin sections show sub-ophitic, intergranular and intersertal textures. The basalts are Fe-rich tholeiites (13.4–13.8 wt %), characterized by high TiO2 (3.64 to 3.94 wt %); moderate MgO contents (4.79 to 5.41 wt %), low K2O contents (<0.58 wt %) and low Mg# (42.4–45.9). They are enriched in large ion lithophile elements, moderately enriched in the light rare earths (chondrite-normalized LaN/YbN 3.37–4.24), and exhibit nearly flat heavy rare-earth patterns that lack significant Eu anomalies (Eu/Eu* 0.86–1.10). Primitive-mantle-normalized element patterns for these rocks show characteristic troughs at K and Sr, absence of a Nb anomaly, and a low Zr/Nb ratio (<15), which suggest insignificant contamination by many types of continental crust, whereas, enrichments in the large ion lithophiles, La, P and Th could suggest enriched source characteristics. Based on the geochemical characteristics of the basalts, it is inferred that the Desur basalts representing the youngest flows of the Deccan Basalt Group are derived by partial melting of a peridotite source, and subsequent fractionation gave rise to the compositions of the basalts that are found in the Belgaum region.  相似文献   
2.
A unique attempt is made to understand the genesis of intraplate seismicity in the Latur-Killari and Koyna seismogenic regions of India, through derived crustal structure by synthesizing active and passive seismic, magnetotelluric, gravity and heat flow data. It has indicated presence of relatively high velocity/density intermediate granulite (and amphibolite) facies rocks underneath the Deccan volcanic cover caused mainly due to a continuous geodynamic process of uplift and erosion since Precambrian times. These findings have been independently confirmed by detailed borehole geological, geochemical and mineralogical investigations. The crystalline basement rock is found to contain 2 wt% of carbon-di-oxide fluid components. The presence of geodynamic process, associated with thermal anomalies at subcrustal depths, is supported by a high mantle heat flow (29–36 mW/m2) beneath both regions, although some structural and compositional variations may exist as evidenced by P- and S-wave seismic velocities. We suggest that the stress, caused by ongoing uplift and a high mantle heat flow is continuously accumulating in this denser and rheologically stronger mafic crust within which earthquakes tend to nucleate. These stresses appear to dominate over and above those generated by the India–Eurasia collision. The role of fluids in stress generation, as advocated through earlier studies, appears limited.  相似文献   
3.
Recent surge in intraplate seismicity has led to detailed geological and geophysical investigations, covering different continental segments of India including seismogenic region of Latur. A synthesis of such data sets to understand the prevailing tectonic and thermal state of the Lithosphere beneath Latur region, that witnessed a large scale human loss due to 1993 seismic activity, has revealed shallow surfacing of denser deeper crustal segments which may have resulted due to ongoing active subsurface tectonic activity like uplift and erosion since geological past. Below this region, Moho temperature exceeds 500°C, heat flow input from the mantle is quite high (29–35 mW/m2) and the asthenosphere is shallow (∼100±10 km). It is suggested that stress generated by ongoing upliftment and related subcrustal thermal anomaly is concentrating in this denser and stronger mafic crust within which earthquakes tend to nucleate. In all likelihood, the seismic activity witnessed in the region may stem from the deep crustal/lithospheric dynamics rather than the role of fluids at the hypocentral depth.  相似文献   
4.
In the oxidized zone of Rakha-Chapri Block of the Singhbhum Copper Belt, alteration of biotite, chlorite and muscovite extends down to ∼ 60 m. Below this level, these minerals are not altered, implying a supergene origin for the clay alteration products. The altered host-rock profile consists of an upper, predominantly kaolinitic zone and a lower illite-chlorite rich zone, with the clay minerals showing an overall tendency to decrease with depth. Kaolinite is the dominant clay mineral, the proportion of which varies considerably with depth, and chlorite, illite and halloysite are the other clay minerals of the oxidized zone. Incipient removal of copper even from the cap rocks, in-situ transformation of sulphides to oxidized compounds, and the unusual mode of occurrence of copper in the oxidized zone are the characteristic features of the Rakha-Chapri Block. Insufficient localized hydrolysis of silicates is considered responsible for relatively low acidity in the oxidized zone as a whole. Copper forms a component of the clay minerals probably as surface adsorbed or/lattice-bound ions.  相似文献   
5.
Study of Landsat MSS imagery and aerial photographs along with selected field checks in Sabi river basin area has thrown some light on the plausible reasons of floods in parts of Rajasthan, Haryana and Delhi regions. It is noticed that the course of river Sabi, a tributary to Yamuna river flowing through the sandy tracks is being controlled by the prominent linears, most of them are faults within the Delhi rocks. But, as the river approaches near Haryana, that controlled course is lost and it develops a very wide river bed, full of sands and have abrupt decrease in its gradient to as low as 2° to 3°. This may be attributed to the migration and aggradational alluvial plains developed thereof, on the western side of Yamuna river. All these factors have been discussed in the paper which shall reflect some points as remedial measures of floods of the Sabi River.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号