首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   5篇
地质学   13篇
海洋学   2篇
天文学   9篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1973年   2篇
排序方式: 共有33条查询结果,搜索用时 46 毫秒
1.
2.
Primary production in the eastern tropical Pacific: A review   总被引:2,自引:12,他引:2  
The eastern tropical Pacific includes 28 million km2 of ocean between 23.5°N and S and Central/South America and 140°W, and contains the eastern and equatorial branches of the north and South Pacific subtropical gyres plus two equatorial and two coastal countercurrents. Spatial patterns of primary production are in general determined by supply of macronutrients (nitrate, phosphate) from below the thermocline. Where the thermocline is shallow and intersects the lighted euphotic zone, biological production is enhanced. In the eastern tropical Pacific thermocline depth is controlled by three interrelated processes: a basin-scale east/west thermocline tilt, a basin-scale thermocline shoaling at the gyre margins, and local wind-driven upwelling. These processes regulate supply of nutrient-rich subsurface waters to the euphotic zone, and on their basis we have divided the eastern tropical Pacific into seven main regions. Primary production and its physical and chemical controls are described for each.Enhanced rates of macronutrient supply maintains levels of primary production in the eastern tropical Pacific above those of the oligotrophic subtropical gyres to the north and south. On the other hand lack of the micronutrient iron limits phytoplankton growth (and nitrogen fixation) over large portions of the open-ocean eastern tropical Pacific, depressing rates of primary production and resulting in the so-called high nitrate-low chlorophyll condition. Very high rates of primary production can occur in those coastal areas where both macronutrients and iron are supplied in abundance to surface waters. In these eutrophic coastal areas large phytoplankton cells dominate; conversely, in the open-ocean small cells are dominant. In a ‘shadow zone’ between the subtropical gyres with limited subsurface ventilation, enough production sinks and decays to produce anoxic and denitrified waters which spread beneath very large parts of the eastern tropical Pacific.Seasonal cycles are weak over much of the open-ocean eastern tropical Pacific, although several eutrophic coastal areas do exhibit substantial seasonality. The ENSO fluctuation, however, is an exceedingly important source of interannual variability in this region. El Niño in general results in a depressed thermocline and thus reduced rates of macronutrient supply and primary production. The multi-decadal PDO is likely also an important source of variability, with the ‘El Viejo’ phase of the PDO resulting in warmer and lower nutrient and productivity conditions similar to El Niño.On average the eastern tropical Pacific is moderately productive and, relative to Pacific and global means, its productivity and area are roughly equivalent. For example, it occupies about 18% of the Pacific Ocean by area and accounts for 22–23% of its productivity. Similarly, it occupies about 9% of the global ocean and accounts for 10% of its productivity. While representative, these average values obscure very substantial spatial and temporal variability that characterizes the dynamics of this tropical ocean.  相似文献   
3.
We have identified 317 stars included in the Hipparcos astrometric catalogue that have parallaxes measured to a precision of better than 15 per cent, and the location of which in the ( M V ,( B − V ) T ) diagram implies a metallicity comparable to or less than that of the intermediate-abundance globular cluster M5. We have undertaken an extensive literature search to locate Strömgren, Johnson/Cousins and Walraven photometry for over 120 stars. In addition, we present new UBV ( RI )C photometry of 201 of these candidate halo stars, together with similar data for a further 14 known metal-poor subdwarfs. These observations provide the first extensive data set of R C I C photometry of metal-poor, main-sequence stars with well-determined trigonometric parallaxes. Finally, we have obtained intermediate-resolution optical spectroscopy of 175 stars.
47 stars still lack sufficient supplementary observations for population classification; however, we are able to estimate abundances for 270 stars, or over 80 per cent of the sample. The overwhelming majority have near-solar abundance, with their inclusion in the present sample stemming from errors in the colours listed in the Hipparcos catalogue. Only 44 stars show consistent evidence of abundances below [Fe/H]=−1.0 . Nine are additions to the small sample of metal-poor subdwarfs with accurate photometry. We consider briefly the implication of these results for cluster main-sequence fitting.  相似文献   
4.
We present near-infrared colour–magnitude diagrams and star counts for a number of regions along the Galactic plane. It is shown that along the l =27°, b =0° line of sight there is a feature at 5.7±0.7 kpc with a density of stars at least a factor of 2 and probably more than a factor of 5 times that of the disc at the same position. This feature forms a distinct clump on an H versus J − H diagram and is seen at all longitudes from the bulge to about l =28°, but at no longitude greater than this. The distance to the feature at l =20° is about 0.5 kpc further than at l =27°, and by l =10° it has merged with, or has become, the bulge. Given that at l =27° and l =21° there is also a clustering of very young stars, the only component that can reasonably explain what is seen is a bar with half-length of around 4 kpc and a position angle of about 43°±7°.  相似文献   
5.
The Makran accretionary prism in southeastern Iran contains extensive Mesozoic zones of melange and large intact ophiolites, representing remnants of the Tethys oceanic crust that was subducted beneath Eurasia. To the north of the Makran accretionary prism lies the Jaz Murian depression which is a subduction-related back-arc basin. The Band-e-Zeyarat/Dar Anar ophiolite is one of the ophiolite complexes; it is located on the west side of the Makran accretionary prism and Jaz Murian depression, and is bounded by two major fault systems. The principal rock units of this complex are a gabbro sequence which includes low- and high-level gabbros, an extensive sheeted diabase dike sequence, late intrusive rocks which consist largely of trondhjemites and diorites, and volcanic rocks which are largely pillow basalts interbedded with pelagic sedimentary rocks, including radiolarian chert. Chondrite- and primitive-mantle-normalized incompatible trace element data and age-corrected Nd, Pb, and Sr isotopic data indicate that the Band-e-Zeyarat/Dar Anar ophiolite was derived from a midocean ridge basalt-like mantle source. The isotopic data also reveal that the source for basalts was Indian-Ocean-type mantle. Based on the rare earth element (REE) data and small isotopic range, all the rocks from the Band-e-Zeyarat/Dar Anar ophiolite are cogenetic and were derived by fractionation from melts with a composition similar to average E-MORB; fractionation was controlled by the removal of clinopyroxene, hornblende and plagioclase. Three 40Ar–39Ar plateau ages of 140.7±2.2, 142.9±3.5 and 141.7±1.0 Ma, and five previously published K–Ar ages ranging from 121±4 to 146±5 Ma for the hornblende gabbros suggest that rocks from this ophiolite were formed during the Late Jurassic–Early Cretaceous. Plate reconstructions suggest that the rocks of this complex appear to be approximately contemporaneous with the Masirah ophiolite which has crystallization age of (150 Ma). Like Masirah, the rocks from the Band-e-Zeyarat/Dar Anar ophiolite complex represent southern Tethyan ocean crust that was formed distinctly earlier than crust preserved in the 90–100 Ma Bitlis-Zagros ophiolites (including the Samail ophiolite).  相似文献   
6.
Delta fronts are often characterized by high rates of sediment supply that result in unstable slopes and a wide variety of soft‐sediment deformation, including the formation of overpressured and mobile muds that may flow plastically during early burial, potentially forming mud diapirs. The coastal cliffs of County Clare, western Ireland, expose Pennsylvanian (Namurian) delta‐front deposits of the Shannon Basin at large scale and in three dimensions. These deposits include decametre‐scale, internally chaotic mudstone masses that clearly impact the surrounding sedimentary strata. Evidence indicates that these were true mud (unlithified sediment) diapirs that pierced overlying strata. This study documents a well‐exposed ca 20 m tall mud diapir and its impact on the surrounding mouth‐bar deposits of the Tullig Cyclothem. A synsedimentary fault and associated rollover dome, evident from stratal thicknesses and the dip of the beds, define one edge of the diapir. These features are interpreted as recording the reactive rise of the mud diapir in response to extensional faulting along its margin. Above the diapir, heterolithic sandstones and siltstones contain evidence for the creation of localized accommodation, suggesting synsedimentary filling, tilting and erosion of a shallow sag basin accommodated by the progressive collapse of the diapir. Two other diapirs are investigated using three‐dimensional models built from ‘structure from motion’ drone imagery. Both diapirs are interpreted to have grown predominantly through passive rise (downbuilding). Stratal relationships for all three diapirs indicate that they were uncompacted and fluid‐rich mud beds that became mobilized through soft‐sediment deformation during early burial (i.e. <50 m, likely <10 m depth). Each diapir locally controlled the stratigraphic architecture in the shallow subsurface and potentially influenced local palaeocurrents on the delta. The mud diapirs studied herein are distinct from deeper ‘shale diapirs’ that have been inferred from seismic sections worldwide, now largely disputed.  相似文献   
7.
Processing U ores in the JEB Mill of the McClean Lake Operation in northern Saskatchewan produces spent leaching solutions (raffinates) with pH  1.5, and As and Ni concentrations up to 6800 and 5200 mg L−1, respectively. Bench-scale neutralization experiments (pH 2–8) were performed to help optimize the design of mill processes for reducing As and Ni concentrations in tailings and raffinates to 1 mg L−1 prior to their disposal. Precipitate mineralogy determined by chemical analysis, XRD, SEM, EM, XM and EXAFS methods, included gypsum (the dominant precipitate), poorly crystalline scorodite (precipitated esp. from pH 2–4), annabergite, hydrobasaluminite, ferrihydrite, green rust II and theophrastite. The As was mostly in scorodite with smaller amounts in annabergite and trace As adsorbed and/or co-precipitated, probably by ferrihydrite. Geochemical modeling indicated that above pH 2, the ion activity product (IAP) of scorodite lies between the solubility products of amorphous and crystalline phases (log Ksp = −23.0 and −25.83, respectively). The IAP decreases with increasing pH, suggesting that the crystallinity of the scorodite increases with pH. Forward geochemical models support the assumption that during neutralization, particles of added base produce sharp local pH gradients and disequilibrium with bulk solutions, facilitating annabergite and theophrastite precipitation.  相似文献   
8.
The location, ages, and geochemical characteristics of marine volcanic rocks preserved in the South Tethyan suture zone of Pakistan suggest that the Réunion hotspot was active off northwestern Greater India well before the emplacement, far to the south, of the Deccan flood basalts, the great bulk of which were erupted at 65-66 Ma and are widely believed to be associated with the hotspot’s plume-head phase. Most of the suture zone samples have Nd-Pb-Sr isotopic ratios (e.g. age-corrected ?Nd(t)=+3.0 to +4.6) close to those expected for modern-type Réunion source mantle in the Late Cretaceous, and their incompatible element patterns resemble those of recent Réunion shield lavas. 40Ar-39Ar incremental heating yields ages of 73.4-72.0 Ma. Nevertheless, unless even older ages are discovered among the suture zone rocks, a pre-Deccan marine phase of Réunion hotspot activity on the Tethyan side of Greater India can be accommodated within the framework of the plume-head model.  相似文献   
9.
Extensive Upper Cretaceous volcanism in southern Madagascar was fed in part by mantle sources resembling those expressed today in the Indian Ocean at Marion and Prince Edward islands and on the central Southwest Indian Ridge. In addition, very low εNd(T) (to −17.4), high(87Sr/86Sr)T (to 0.72126) tholeiites in southwestern Madagascar were variably but highly contaminated by ancient continental material broadly like that affecting the Bushe and Poladpur Formations of the later Deccan Traps in India. Alkalic dikes in southwestern Madagascar have a rough analogue in the Mahabaleshwar Formation of the Deccan, in that they document the influence of a low 206Pb/204Pb, negative εNd, relatively low 87Sr/86Sr reservoir. A very similar reservoir is manifested at present in mid-ocean ridge basalts on the central Southwest Indian Ridge near 40°E. The original location of this end-member appears likely to have been in the Madagascan lithospheric mantle, a portion of which may have been removed in the Middle Cretaceous by the action of the Marion hotspot or the rifting of Indo-Madagascar. An origin within the hotspot itself also may be possible; however, recent products of the hotspot appear to lack completely the necessary low 206Pb/204Pb, low εNd signatures.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号