首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   13篇
  国内免费   2篇
测绘学   4篇
大气科学   22篇
地球物理   58篇
地质学   47篇
海洋学   76篇
天文学   32篇
自然地理   2篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   8篇
  2018年   7篇
  2017年   8篇
  2016年   5篇
  2015年   7篇
  2014年   11篇
  2013年   14篇
  2012年   10篇
  2011年   5篇
  2010年   14篇
  2009年   10篇
  2008年   9篇
  2007年   7篇
  2006年   13篇
  2005年   9篇
  2004年   15篇
  2003年   11篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1990年   4篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   7篇
  1972年   1篇
  1971年   2篇
排序方式: 共有241条查询结果,搜索用时 46 毫秒
1.
Cathodoluminescence (CL) analyses were carried out on maskelynite and lingunite in L6 chondrites of Tenham and Yamato-790729. Under CL microscopy, bright blue emission was observed in Na-lingunite in the shock veins. Dull blue-emitting maskelynite is adjacent to the shock veins, and aqua blue luminescent plagioclase lies farther away. CL spectroscopy of the Na-lingunite showed emission bands centered at ~330, 360–380, and ~590 nm. CL spectra of maskelynite consisted of emission bands at ~330 and ~380 nm. Only an emission band at 420 nm was recognized in crystalline plagioclase. Deconvolution of CL spectra from maskelynite successfully separated the UV–blue emission bands into Gaussian components at 3.88, 3.26, and 2.95 eV. For comparison, we prepared K-lingunite and experimentally shock-recovered feldspars at the known shock pressures of 11.1–41.2 GPa to measure CL spectra. Synthetic K-lingunite has similar UV–blue and characteristic yellow bands at ~550, ~660, ~720, ~750, and ~770 nm. The UV–blue emissions of shock-recovered feldspars and the diaplectic feldspar glasses show a good correlation between intensity and shock pressure after deconvolution. They may be assigned to pressure-induced defects in Si and Al octahedra and tetrahedra. The components at 3.88 and 3.26 eV were detectable in the lingunite, both of which may be caused by the defects in Si and Al octahedra, the same as maskelynite. CL of maskelynite and lingunite may be applicable to estimate shock pressure for feldspar-bearing meteorites, impactites, and samples returned by spacecraft mission, although we need to develop more as a reliable shock barometer.  相似文献   
2.
Northwest Africa (NWA) 6112, Miller Range (MIL) 090206 (plus its pairs: MIL 090340 and MIL 090405), and Divnoe are olivine‐rich ungrouped achondrites. We investigated and compared their petrography, mineralogy, and olivine fabrics. We additionally measured the oxygen isotopic compositions of NWA 6112. They show similar petrography, mineralogy, and oxygen isotopic compositions and we concluded that these five meteorites are brachinite clan meteorites. We found that NWA 6112 and Divnoe had a c axis concentration pattern of olivine fabrics using electron backscattered diffraction (EBSD). NWA 6112 and Divnoe are suggested to have been exposed to magmatic melt flows during their crystallization on their parent body. On the other hand, the three MIL meteorites have b axis concentration patterns of olivine fabrics. This indicates that the three MIL meteorites may be cumulates where compaction of olivine grains was dominant. Alternatively, they formed as residues and were exposed to olivine compaction. The presence of two different olivine fabric patterns implies that the parent body(s) of brachinite clan meteorites experienced diverse igneous processes.  相似文献   
3.
Physical, chemical, and mineralogical analyses of undisturbed drill cores of pelitic schist from a landslide area in Japan clarified the mechanisms of chemical weathering of pelitic schist. Oxidizing surface water percolates downward and reaches an oxidation front, where chlorite is altered to Al‐vermiculite, graphite and pyrite are oxidized and depleted, and goethite precipitates. Oxidation of pyrite also occurs just below the oxidation front, probably by ferric iron. Pyrite oxidation yields sulphuric acid, which penetrates further downward, interacting with and weakening the rocks. In addition to this chemical weakening, stress release and shearing along schistosities form an incipient shear zone, which propagates to a sliding zone that forms the rupture surface of a landslide. Once a sliding zone has developed, it inhibits downward groundwater flow across it because of its low permeability, slowing the downward propagation of the weathering zone until this filtration barrier is broken by landslide movement. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
5.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
6.
Spheroidal weathering, one of the important rock weathering styles, has been attributed to chemical weathering by the water from joint surfaces, and mechanical aspects of the weathering have not been well addressed. We made an investigation on spheroidal weathering of Miocene granite porphyry with well‐developed columnar joints and found that this spheroidal weathering proceeds through chemical processes and accompanying mechanical processes. The investigation of the textures, physical properties, mineralogy, and chemistry of the porphyry revealed the presence of a brown band on the surface margins of corestones, representing the oxidation of pyrite and chlorite, and the precipitation of iron hydroxides, and the consequent generation of micro‐cracks within the band. During weathering, oxidation progresses inwards from joints that surround the rindlets, including both high‐angle columnar and low‐angle planar joints, and causes rounding of the unweathered interior portion of the rock. Microscopic observations of the brown band embedded with fluorescent resin show that pores are first filled with iron hydroxides, and that micro‐cracks then form parallel to the oxidation front in the outer portion of the brown band. Iron hydroxide precipitation increases the P‐wave velocity in the brown band, while micro‐crack formation decreases the tensile strength of the rock. Where the brown band has thickened to ~6 cm, the micro‐cracks are connected to one another to create continuous cracks, which separate the rindlets from the corestone. Micro‐crack formation parallel to the corestone surface may be attributed to compressive stresses generated by small amounts of volumetric expansion due to the precipitation of iron hydroxides in the brown band. Earth surface is under oxidizing environments so that precipitation of iron hydroxides commonly occurs; the spheroidal weathering in this paper is a typical example of the combination of chemical and mechanical processes under such environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
7.
8.
A numerical experiment is made using a barotropic model for the western boundary currents. The time-dependent, non-linear vorticity equation is integrated with and without the variable of bottom topography. The inertial and frictional boundary flow is resolved with a fine grid size of 10 km. Connection of the western boundary currents with the general circulation is facilitated by giving the fixed Sverdrup transport at the eastern boundary of the model (400 km offshore).For the flat bottom topography, steady flow forRe=35 shows dynamical balance essentially of a frictional model. The transient response leading to the formation of the western boundary currents in the model seems to support theLighthill's theory (1969). ForRe=350, unsteady features revealed byBryan (1963) is re-established. A phenomenon of barotropic instability is also observed with sufficient resolution. For the model with a continental slope the steady flow is also obtained forRe=35. The boundary currents flow over the continental slope, deviating offshore as they flow northward.  相似文献   
9.
It is shown by a numerical experiment with fine grid that the finite difference form of rotation of the Coriolis force used in ENDOH (1973) gives practically the same solution as that obtained by the use of the finite difference form pointed out byTakano (1974).  相似文献   
10.
Time-series measurements of temperature, salinity, suspended matter and beam attenuation coefficient () were measured at four hour intervals for about two days in June/ July 1982 in the middle shelf region and the coastal region of the southeastern Bering Sea. Current meters were also moored at the same locations.Depth-time distributions of indicated that profiles of suspended matter resulted from a combined process of resuspension of underlying sediments and sinking of suspended particles. Average-values for all measurements for particles revealed that the upward transport of particles due to resuspension formed a boundary layer, with a thickness apparently related to scalar speed. The average-profiles of the particle volume concentration were assumed to result from a balance between the sinking and diffusive flux of particles under a steady state, and the upward fluxes were calculated. Within the boundary layer, values of the upward fluxes of particulate organic matter linearly decreased with the logarithm of distance from the bottom. Fluxes of organic carbon at the upper edge of the boundary layer were 0.375 gC·m–2·day–1 in the middle shelf region (18 m above the bottom, bottom depth=78m) and 0.484gC·m–2·day–1 in the coastal region (25 m above the bottom, bottom depth=33m), and fluxes of nitrogen in both regions were 0.067 gN·m–2·day–1. The flux of organic carbon obtained in the middle shelf region (18 m above the bottom) agreed approximately with the flux (0.416 gC·m–2·day–1) calculated by substituting primary production data into the empirical equation of Suess (1980).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号