首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6334篇
  免费   288篇
  国内免费   77篇
测绘学   235篇
大气科学   512篇
地球物理   1491篇
地质学   2093篇
海洋学   522篇
天文学   1172篇
综合类   28篇
自然地理   646篇
  2022年   31篇
  2021年   74篇
  2020年   86篇
  2019年   121篇
  2018年   179篇
  2017年   161篇
  2016年   231篇
  2015年   173篇
  2014年   197篇
  2013年   408篇
  2012年   257篇
  2011年   342篇
  2010年   289篇
  2009年   380篇
  2008年   336篇
  2007年   287篇
  2006年   268篇
  2005年   257篇
  2004年   256篇
  2003年   203篇
  2002年   210篇
  2001年   114篇
  2000年   138篇
  1999年   90篇
  1998年   102篇
  1997年   73篇
  1996年   79篇
  1995年   83篇
  1994年   87篇
  1993年   67篇
  1992年   83篇
  1991年   65篇
  1990年   54篇
  1989年   49篇
  1988年   54篇
  1987年   50篇
  1986年   54篇
  1985年   67篇
  1984年   64篇
  1983年   76篇
  1982年   56篇
  1981年   65篇
  1980年   55篇
  1979年   65篇
  1978年   51篇
  1977年   34篇
  1976年   28篇
  1975年   26篇
  1974年   26篇
  1973年   30篇
排序方式: 共有6699条查询结果,搜索用时 31 毫秒
1.
The nonlinear dynamics of long-wave perturbations of the inviscid Kolmogorov flow, which models periodically varying in the horizontal direction oceanic currents, is studied. To describe this dynamics, the Galerkin method with basis functions representing the first three terms in the expansion of spatially periodic perturbations in the trigonometric series is used. The orthogonality conditions for these functions formulate a nonlinear system of partial differential equations for the expansion coefficients. Based on the asymptotic solutions of this system, a linear, quasilinear, and nonlinear stage of perturbation dynamics is identified. It is shown that the time-dependent growth of perturbations during the first two stages is succeeded by the stage of stable nonlinear oscillations. The corresponding oscillations are described by the oscillator equation containing a cubic nonlinearity, which is integrated in terms of elliptic functions. An analytical formula for the period of oscillations is obtained, which determines its dependence on the amplitude of the initial perturbation. Structural features of the field of the stream function of the perturbed flow are described, associated with the formation of closed vortex cells and meandering flow between them. As a supplement, an asymptotic analysis of nonlinear dynamics of long-wave perturbations superimposed on a damped by small viscosity Kolmogorov flow (very large, but finite Reynolds numbers) is made. It is strictly shown that all velocity components of the perturbed flow remain bounded in this case.  相似文献   
2.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   
3.
Subvolcanic environments in supra‐subduction zones are renowned for hosting epithermal deposits that often contain electrum and native gold, including bonanza examples. This study examined mineral assemblages and processes occurring in shallow‐crust volcanic settings using recent eruption (2012–2013) of the basaltic Tolbachik volcano in the Kamchatka arc. The Tolbachik eruptive system is characterized by an extensive system of lava tubes. After cessation of magma input, the tubes maintained the flow of hot oxidized gases that episodically interacted with the lava surfaces and sulphate‐chloride precipitates from volcanic gases on these surfaces. The gas‐rock interaction had strong pyrometamorphic effects that resulted in the formation of molten salt, oxidized (tenorite, hematite, Cu‐rich magnesioferrite) and skarn‐like silicate mineral assemblages. By analogy with experimental studies, we propose that a combination of these processes was responsible for extraction of metals from the basaltic wall rocks and deposition of Cu‐, Fe‐ and Cu‐Fe‐oxides and native gold.  相似文献   
4.
Amphibians are well known as being one of the main groups of animals today most threatened by environmental changes but they are also some of the least well understood of all terrestrial vertebrates. This gap in knowledge is much greater as we look further back into the relatively recent past, despite representing an invaluable resources in archaeological and palaeontological assemblages that are more indicative of palaeoclimate conditions than most other vertebrate taxa. This in part stems from their remains being typically much less studied, partly due to the less common forms of expertise required for identifications based on skeletal morphology – the most frequently observed tissue that remains in ancient assemblages. Here we apply a method of biomolecular species identification by collagen peptide mass fingerprinting to the British Late Pleistocene assemblage of Pin Hole Cave (Creswell Crags, UK) as well as a range of relevant extant taxa for comparison. Our results demonstrate the ability to separate at the species level with all modern taxa investigated, allowing for the identification of these archaeological remains to the amphibian taxa known to exist in Late Pleistocene Britain. Analyses of the Pin Hole assemblage found a dominance of the two species previously known from the site (common frogs and toads: Rana temporaria and Bufo bufo, respectively) and also a small number of the rarer natterjack toad (Epidalea calamita) not previously identified in the Creswell Crags region but known from other sites in the UK; additionally, one specimen appeared to yield the fingerprint of the moor frog (R. arvalis), now extinct in the UK. As such, collagen fingerprinting is here shown to widen the known palaeobiodiversity of taxa, and highlights the further potential to enhance our understanding of climate change in the past.  相似文献   
5.
Algae is an informal term used to describe a broad group of simple organisms from the plant kingdom. The organisms included within this grouping are aquatic photosynthetic biota with an extensive range of life habits and forms. These organisms range from micron-sized unicellular forms to giant seaweeds and kelps, which can grow to several metres long. Both benthic and planktonic modes of life are known and display a wide variety of life cycles.  相似文献   
6.
The Gongga Shan batholith is a complex granitoid batholith on the eastern margin of the Tibetan Plateau with a long history of magmatism spanning from the Triassic to the Pliocene. Late Miocene-Pliocene units are the youngest exposed crustal melts within the entire Asian plate of the Tibetan Plateau.Here, we present in-situ zircon Hf isotope constraints on their magmatic source, to aid the understanding of how these young melts were formed and how they were exhumed to the surface. Hf isotope signatures of Eocene to Pliocene zircon rims(ε_(Hf)(t)=-4 to +4), interpreted to have grown during localised crustal melting, are indicative of melting of a Neoproterozoic source region, equivalent to the nearby exposed Kangding Complex. Therefore, we suggest that Neoproterozoic crust underlies this region of the Songpan-Ganze terrane, and sourced the intrusive granites that form the Gongga Shan batholith. Localised young melting of Neoproterozoic lower or middle crust requires localised melt-fertile lithologies. We suggest that such melts may be equivalent to seismic and magnetotelluric low-velocity and high-conductivity zones or "bright spots" imaged across much of the Tibetan Plateau. The lack of widespread exposed melts this age is due either to the lack of melt-fertile rocks in the middle crust, the very low erosion level of the Tibetan plateau, or to a lack of mechanism for exhuming such melts. For Gongga Shan, where some melting is younger than nearby thermochronological ages of low temperature cooling, the exact process and timing of exhumation remains enigmatic, but their location away from the Xianshuihe fault precludes the fault acting as a conduit for the young melts. We suggest that underthrusting of dry granulites of the lower Indian crust(Archaean shield) this far northeast is a plausible mechanism to explain the uplift and exhumation of the eastern Tibetan Plateau.  相似文献   
7.
Oued Awlitis 001 is a highly feldspathic, moderately equilibrated, clast‐rich, poikilitic impact melt rock lunar meteorite that was recovered in 2014. Its poikilitic texture formed due to moderately slow cooling, which judging from textures of rocks in melt sheets of terrestrial impact structures, is observed in impact melt volumes at least 100 m thick. Such coherent impact melt volumes occur in lunar craters larger than ~50 km in diameter. The composition of Oued Awlitis 001 points toward a crustal origin distant from incompatible‐element‐rich regions. Comparison of the bulk composition of Oued Awlitis 001 with Lunar Prospector 5° γ‐ray spectrometer data indicates a limited region of matches on the lunar farside. After its initial formation in an impact crater larger than ~50 km in diameter, Oued Awlitis 001 was excavated from a depth greater than ~50 m. The cosmogenic nuclide inventory of Oued Awlitis 001 records ejection from the Moon 0.3 Ma ago from a depth of at least 4 m and little mass loss due to ablation during its passage through Earth's atmosphere. The terrestrial residence time must have been very short, probably less than a few hundred years; its exact determination was precluded by a high concentration of solar cosmic ray‐produced 14C. If the impact that excavated Oued Awlitis 001 also launched it, this event likely produced an impact crater >10 km in diameter. Using petrologic constraints and Lunar Reconnaissance Orbiter Camera and Diviner data, we test Giordano Bruno and Pierazzo as possible launch craters for Oued Awlitis 001.  相似文献   
8.

This paper focuses on the shrinkage behavior of soil specimens involving sand, kaolinite, and kaolinite/sand mixtures subjected to desiccation under controlled conditions. Both, free and restrained shrinkage conditions are studied. The experiments show that pure soils do not curl upon unrestrained shrinkage; however, (under the same conditions) kaolinite/sand mixtures exhibited a marked curling. Furthermore, the mixture with the higher sand content broke through the middle of the sample after displaying a significant curling. Soils subjected to restricted shrinkage developed cracks with slight curling. To simulate the observed behavior, a mechanical model able to reproduce the detachment of the soil sample from the mold is proposed in this work and implemented in a fully coupled hydro-mechanical finite-element code. It is concluded that suction and differential shrinkage are key factors influencing the curling behavior of soils. The proposed framework was able to satisfactorily explain and reproduce the different stages and features of soil behavior observed in the experiments.

  相似文献   
9.
As mineral exploration seeks deeper targets, there will be a greater reliance on geophysical data and a better understanding of the geological meaning of the responses will be required, and this must be achieved with less geological control from drilling. Also, exploring based on the mineral system concept requires particular understanding of geophysical responses associated with altered rocks. Where petrophysical datasets of adequate sample size and measurement quality are available, physical properties show complex variations, reflecting the combined effects of various geological processes. Large datasets, analysed as populations, are required to understand the variations. We recommend the display of petrophysical data as frequency histograms because the nature of the data distribution is easily seen with this form of display. A petrophysical dataset commonly contains a combination of overlapping sub-populations, influenced by different geological factors. To understand the geological controls on physical properties in hard rock environments, it is necessary to analyse the petrophysical data not only in terms of the properties of different rock types. It is also necessary to consider the effects of processes such as alteration, weathering, metamorphism and strain, and variables such as porosity and stratigraphy. To address this complexity requires that much more supporting geological information be acquired than in current practice. The widespread availability of field portable instruments means quantitative geochemical and mineralogical data can now be readily acquired, making it unnecessary to rely primarily on categorical rock classification schemes. The petrophysical data can be combined with geochemical, petrological and mineralogical data to derive explanations for observed physical property variations based not only on rigorous rock classification methods, but also in combination with quantitative estimates of alteration and weathering. To understand how geological processes will affect different physical properties, it is useful to define three end-member forms of behaviour. Bulk behaviour depends on the physical properties of the dominant mineral components. Density and, to a lesser extent, seismic velocity show such behaviour. Grain and texture behaviour occur when minor components of the rock are the dominate controls on its physical properties. Grain size and shape control grain properties, and for texture properties the relative positions of these grains are also important. Magnetic and electrical properties behave in this fashion. Thinking in terms of how geological processes change the key characteristics of the major and minor mineralogical components allows the resulting changes in physical properties to be understood and anticipated.  相似文献   
10.
High mountainous areas are geomorphologically active environments which are strongly shaped by redistribution of sediments and soils. With the projected climate warming in the twenty-first century and the continued retreat of glaciers, the area of newly exposed, highly erodible sediments and soils will increase. This presents a need to better understand and quantify erosion processes in young mountainous soils, as an increase in erodibility could threaten human infrastructure (i.e. hydroelectric power, tourist installations and settlements). While soil development is increasingly well understood and quantified, a coupling to soil erosion rates is still missing. The aim of this study was, therefore, to assess how soil erosion rates change with surface age. We investigated two moraine chronosequences in the Swiss Alps: one in the siliceous periglacial area of Steingletscher (Sustenpass), with soils ranging from 30 a to 10 ka, and the other in the calcareous periglacial area of Griessgletscher (Klausenpass) with surfaces ranging from age of 110 a to 13.5 ka. We quantified the erosion rates using the 239+240Pu fallout radionuclides and compared them to physical and chemical soil properties and the vegetation coverage. We found no significant differences between the two parent materials. At both chronosequences, the erosion rates were highest in the young soils (on average 5−10 t ha-1 a-1 soil loss). Erosion rates decreased markedly after 3−5 ka of soil development (on average 1−2.5 t ha-1 a-1 soil loss) to reach a more or less stable situation after 10−14 ka (on average 0.3–2 t ha-1 a-1). Climate change not only causes glacier retreat, but also increased sediment dynamics. Depending on the relief and vegetational development, it takes up to at least 10 ka to reach soil stability. The establishment of a closed vegetation cover with dense root networks seems to be the controlling factor in the reduction of soil erodibility. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号