首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   4篇
  2018年   1篇
  2016年   1篇
  2013年   1篇
  2009年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The Imiter inlier at the eastern Anti-Atlas chain (Morocco) hosts a world-class epithermal Ag-Hg deposit, and several occurrences of sulfide-magnetite mineralization. These occurrences are confined to transcurrent faults that cut mildly to highly potassic I- and S-type granite intrusions (e.g., Igoudrane, Bou Teglimt, Taouzzakt and Bou Fliou).In this contribution, we present new field, petrographic and microanalytical data of the Bou Fliou sulfide-magnetite mineralization in the northwestern part of the Bou Teglimt granodiorite intrusion (567?±?6Ma). Field and microscopic investigations reveal pervasive silicification and potassic alteration associated with iron oxides-rich (>10?vol %) veins, stockworks, and breccias along NE-SW faults. The ore minerals are mainly magnetite, hematite, chalcopyrite, pyrite, sphalerite, Ag-galena, cobaltite, and less abundant Bi-sulfosalts (i.e., cosalite, galenobistmuthite, and llilanite-gustavite). The low-titanium iron oxides (magnetite and hematite), widespread iron-rich breccia, association with crustal scale fault zone, pervasive alteration, and overprinting mineral assemblages suggest a shallow level IOCG-style mineralization. High-order splays of the major fault zone could have provided effective traps for magmatic and basinal Cu and Zn-Pb hydrothermal fluids. The ~550 Ma intrusive phases in the region could have contributed by fluid, elements or heat in a local effective blumbing. The mineralogical and ore textural criteria reflecting ore formation at a realtively shallow crustal environment, but a fluid inclusion study is needed to characterize the ore fluids and mechanism of ore deposition.  相似文献   
2.
The distribution of platinum-group elements (PGEs), together with spinel composition, of podiform chromitites and serpentinized peridotites were examined to elucidate the nature of the upper mantle of the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. The mantle section is dominated by harzburgite with less abundant dunite. Chromitite pods are also found as small lenses not exceeding a few meters in size. Almost all primary silicates have been altered, and chromian spinel is the only primary mineral that survived alteration. Chromian spinel of chromitites is less affected by hydrothermal alteration than that of mantle peridotites. All chromitite samples of the Bou Azzer ophiolite display a steep negative slope of PGE spidergrams, being enriched in Os, Ir and Ru, and extremely depleted in Pt and Pd. Harzburgites and dunites usually have intermediate to low PGE contents showing more or less unfractionated PGE patterns with conspicuous positive anomalies of Ru and Rh. Two types of magnetite veins in serpentinized peridotite, type I (fibrous) and type II (octahedral), have relatively low PGE contents, displaying a generally positive slope from Os to Pd in the former type, and positive slope from Os to Rh then negative from Rh to Pd in the latter type. These magnetite patterns demonstrate their early and late hydrothermal origin, respectively. Chromian spinel composition of chromitites, dunites and harzburgites reflects their highly depleted nature with little variations; the Cr# is, on average, 0.71, 0.68 and 0.71, respectively. The TiO2 content is extremely low in chromian spinels, <0.10, of all rock types. The strong PGE fractionation of podiform chromitites and the high-Cr, low-Ti character of spinel of all rock types imply that the chromitites of the Bou Azzer ophiolite were formed either from a high-degree partial melting of primitive mantle, or from melting of already depleted mantle peridotites. This kind of melting is most easily accomplished in the supra-subduction zone environment, indicating a genetic link with supra-subduction zone magma, such as high-Mg andesite or arc tholeiite. This is a general feature in the Neoproterozoic upper mantle.  相似文献   
3.
The integrated use of geological, geophysical, and geochemical data from Eastern Tunisia onshore and offshore samples indicate a crustal thinning induced from the Tethyan rifting. This is responsible for the subsequent evolution of the North African passive margin during the Late Cretaceous, and the creation of the fold–thrust belt and associated foreland deformations. This thinned crust was an area of mantle upwelling that favoured the increase of isotherms, the uprise of basalt magma, and the circulation of hydrothermal fluids. The Cretaceous magmatism generated a major hydrothermal event characterised by the circulation of hot fluids along faults and a relatively high heat flow in the basin. Temperature elevation and hydrothermal conditions led to alteration of basalts and generated a new mineral equilibrium around the enclosing sedimentary deposits.  相似文献   
4.
In the Tifnoute Valley, three plutonic units have been defined: the Askaoun intrusion, the Imourkhssen intrusion and the Ougougane group of small intrusions. They are made of quartz diorite, granodiorite and granite and all contain abundant mafic microgranular enclaves (MME). The Askaoun granodiorite and the Imourkhssen granite have been dated by LA-ICP-MS on zircon at 558?±?2 Ma and 561?±?3 Ma, respectively. These granitic intrusions are subcontemporaneous to the widespread volcanic and volcano-detrital rocks from the Ouarzazate Group (580–545 Ma), marking the post-collisional transtensional period in the Anti-Atlas and which evolved towards alkaline and tholeiitic lavas in minor volume at the beginning of the Cambrian anorogenic intraplate extensional period. Geochemically, the Tifnoute Valley granitoids belong to an alkali-calcic series (high-K calc-alkaline) with typical Nb-Ta negative anomalies and no alkaline affinities. Granitoids and enclaves display positive εNd-560Ma (+0.8 to +3.5) with young Nd-TDM between 800 and 1200 Ma and relatively low 87Sr/86Sr initial ratios (Sri: 0.7034 and 0.7065). These values indicate a mainly juvenile source corresponding to a Pan-African metasomatized lithospheric mantle partly mixed with an old crustal component from the underlying West African Craton (WAC). Preservation in the Anti-Atlas of pre-Pan-African lithologies (c. 2.03 Ga basement, c. 800 Ma passive margin greenschist-facies sediments, allochthonous 750–700 Ma ophiolitic sequences) indicates that the Anti-Atlas lithosphere has not been thickened and was never an active margin during the Neoproterozoic. After a transpressive period, the late Ediacaran period (580–545 Ma) is marked by movement on near vertical transtensional faults, synchronous with the emplacement of the huge Ouarzazate Group and the Tifnoute Valley granitoids. We propose here a geodynamical model where the Tifnoute Valley granitoids as well as the Ouarzazate Group were generated during the post-collisional metacratonic evolution of the northern boundary of the West African craton. The convergence with the peri-Gondwanan active margin produced brittle fracturing of the cratonic boundary without thickening, allowing rising of magmas. The Tifnoute Valley granitoids display a metasomatized lithospheric mantle source mixed with a minor ancient (2 Ga) continental crust component from the underlying WAC.  相似文献   
5.
No paleomagnetic data exist for Paleo-Mesoproterozoic times of the West African Craton (WAC). Therefore, paleogeographic reconstructions for such old geological times are difficult to constrain. Gaps on the sedimentary record and intense remagnetizations are the major problems that paleomagnetic studies come across. Recent geochronological results for dyke swarms that intrude several Proterozoic inliers of WAC in the Anti-Atlas Belt (southern Morocco) revealed ages between Paleoproterozoic and early Neoproterozoic, opening for the first time a window of opportunity to conduct paleomagnetic studies and tentatively infer about the paleoposition of WAC during Proterozoic. On this scope we conducted a paleomagnetic study on seven Proterozoic dykes of the Iguerda inlier. The meaning of the obtained paleomagnetic directions was evaluated by rock magnetic and mineral analyses, complemented by petrographic observations. Our samples record the presence of a complex history of remagnetization, mostly assigned to several Phanerozoic thermal/chemical events, in particular to the late stages of Pan African orogeny (s.l.), to the Late Carboniferous Variscan orogeny, and even to more recent events. The recognized remagnetization processes are related to widespread metamorphic events under greenschist facies followed by low-temperature oxidation, both responsible for the formation of new magnetic phases, like magnetite and hematite. These events obliterated the primary (magmatic) thermo-remanent magnetization and promoted multiple remagnetizations of the dykes, thermally and chemically. For only one dyke the presence of primary magnetization is possible to infer, though not to confirm, and would place WAC at an equatorial position around 1750 Ma.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号