首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   4篇
测绘学   1篇
大气科学   6篇
地球物理   20篇
地质学   26篇
海洋学   3篇
自然地理   3篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2003年   1篇
  1991年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
1.
Shrink–swell soils, such as those in a Mediterranean climate regime, can cause changes in terms of hydrological and erosive responses because of the changing soil water storage conditions. Only a limited number of long‐term studies have focused on the impacts on both hydrological and erosive responses and their interactions in an agricultural environment. In this context, this study aims to document the dynamics of cracks, runoff and soil erosion within a small Mediterranean cultivated catchment and to quantify the influence of crack processes on the water and sediment supplied to a reservoir located at the catchment outlet using water and sediment measurements at a cultivated field outlet as baseline. Detailed monitoring of the presence of topsoil cracks was conducted within the Kamech catchment (ORE OMERE, Tunisia), and runoff and suspended sediment loads were continuously measured over a long period of time (2005–2012) at the outlets of a field (1.32 ha) and a catchment (263 ha). Analysis of the data showed that topsoil cracks were open approximately half of the year and that the rainfall regime and water table level conditions locally control the seasonal cracking dynamics. Topsoil cracks appeared to seriously affect the generation of runoff and sediment concentrations and, consequently, sediment yields, with similar dynamics observed at the field and catchment outlets. A similar time lag in the seasonality between water and sediment delivery was observed at these two scales: although the runoff rates were globally low during the presence of topsoil cracks, most sediment transport occurred during this period associated with very high sediment concentrations. This study underlines the importance of a good prediction of runoff during the presence of cracks for reservoir siltation considerations. In this context, the prediction of cracking effects on runoff and soil erosion is a key factor for the development of effective soil and water management strategies and downstream reservoir preservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
2.
The distribution of phytoplankton abundance, biomass and species composition coupled with environmental factors and metazooplankton was studied relatively intensively and over a period of four consecutive years in five ponds featuring a gradient of increasing salinity from near to that of sea water to a nine-fold concentration from 2000 to 2003. The results indicate that the physical characteristics of the water (temperature and salinity) were quite similar over the years. Nutrients, which were concentrated in pond A1, decreased with increases in salt concentration. The composition of the phytoplankton community showed strong seasonality. Diatoms dominated in the first ponds A1, A16 and C2-1, followed by dinoflagellates. Chlorophyceae dominated the phytoplankton community in the hypersaline ponds M2 and TS. Cyanobacteriae were relatively abundant in ponds M2 and TS. The highest phytoplankton density and biomass were found in the ponds with the highest salinity due to the proliferation of Dunaliella salina (Chlorophyta: Volvocales). The inter-annual study of phytoplankton succession in the Sfax solar salterns showed slight differences among the years of study due to the stability of the environmental conditions. Phytoplankton communities were permanently primitive, stage 1 – structured as they failed to build complexity because of salt stress which operates for longer and above any other variables. This reduced frequency of disturbance to the existing course of regulation, allowed the community to “mature” from its “primitive” state, rather than experience frequent structural setbacks.  相似文献   
3.
4.
The major ion hydrochemistry, sodium absorption ratio (SAR), sodium percentage, and isotopic signatures of Hammamet-Nabeul groundwaters were used to identify the processes that control the mineralization, irrigation suitability, and origin of different water bodies. This investigation highlights that groundwater mineralization is mainly influenced by water-rock interaction and pollution by the return flow of irrigation water. The comparison of groundwater quality with irrigation suitability standards proves that most parts of groundwater are unacceptable for irrigation and this long-term practice may result in a significant increase of the salinity and alkalinity in the soils. Based on isotopic signatures, the shallow aquifer groundwater samples were classified into (i) waters with depleted δ18O and δ2H contents, highlighting recharge by modern precipitation, and (ii) waters with enriched stable isotope contents, reflecting the significance of recharge by contaminated water derived from the return flow of evaporated irrigation waters. The deep-aquifer groundwater samples were also classified into (i) waters with relatively enriched isotope contents derived from modern recharge and mixed with shallow-aquifer groundwater and (ii) waters with depleted stable isotope contents reflecting a paleoclimatic origin. Tritium data permit to identify three origins of recharge, i.e., contemporaneous, post-nuclear, and pre-nuclear. Carbon-14 activities demonstrate the existence of old paleoclimatic recharge related to the Holocene and Late Pleistocene humid periods.  相似文献   
5.
The Agadir-Essaouira area in the occidental High Atlas Mountains of Morocco is characterized by a semi-arid climate. The scarcity and quality of water resources, exacerbated by long drought periods, constitute a major problem for a sustainable development of this region. Groundwater resources of carbonate units within Jurassic and Cretaceous aquifers are requested for drinking and irrigation purposes. In this study, we collected 84 samples from wells, boreholes, springs, and rivers. Hydrochemical and isotopic data were used to examine the mineralization and origin of water, which control groundwater quality. The chemical composition of water seems to be controlled by water-rock interactions, such as dissolution of carbonates (calcite and dolomite), weathering of gypsum, as well as ion exchange processes, which explain the observed variability. Stable isotopes results show that groundwater from the mainly marly Cretaceous aquifer are submitted to an evaporation effect, while samples from the chiefly calcareous Jurassic aquifer indicate a meteoric origin, due to a rapid infiltration of recharge runoff through the karstic outcrops. The low values of δ18O and δ2H suggest a local recharge from areas with elevations ranging from 400 to 1200 m for the Cretaceous aquifer and from 800 to 1500 m for the Jurassic units.  相似文献   
6.
This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient CT; reflection coefficient CR, and energy dissipation coefficient CE coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that CR reaches the maximum value when B/L = 0.46n while it is smallest when B/L=0.46n+0.24 (n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and CR and CT ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced CR, will enhance the structure’s wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.  相似文献   
7.
Modeling of surface water quality based on a deductive approach is highly non-linear, varies with time, is spatially distributed and is difficult to incorporate as part of decision-support systems. A Neural Networks (NNs) procedure provides a reliable analysis in several science and technology fields. NNs are often applied to develop statistical models for intrinsically non-linear systems. In this investigation, NNs are used in the induction of a water quality model from available field measurements for the Bahr Hadus drain in the Eastern Egyptian Delta. Two models, namely, feed-forward back propagation (BP) and cascade correlation (CC), were used. It is concluded that the CCNN model produced slightly more accurate results and learned very quickly compared with the BP procedure. The results indicated that the NNs model could be used as a non-linear dynamic system model to encapsulate site-specific knowledge and emulate the temporal sequence of one-dimensional flow systems. This NNs model undoubtedly will reduce the cost and save time in this class of problems.  相似文献   
8.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
9.
The south Solaf zone in SW Sinai comprises a metasedimentary sequence of metagraywackes intercalated with minor metavolcanic sheets, metasiltstones, meta-arenites, and calc–silicates. The metavolcanics (basalt–andesite) show high- to medium-K calc–alkaline nature. They exhibit distinctive Nb-Ta negative anomalies relative to enriched LILE, being highly similar to active continental margin lavas, but they also have the characteristics of rift-related magmatism. Magmas of similar composition are interpreted to be formed in an extensional environment and their source regions are zones of enriched subcontinental lithosphere. The metasediments are poor to moderate sorting, intercalated to the north with minor impure calcareous layers. Geochemical investigation shows that they are immature to semi-mature sediments derived from a source of mafic to felsic composition. These metasediments are chemically similar to the active continental margins and are comparable to the Feiran gneisses and metagraywackes that were deposited before 800 Ma in an extensional environment. The investigated rocks suffered LP-HT amphibolite facies metamorphism. The P-T estimates using various thermobarometric calibrations gave temperatures of 554–610 °C and pressures of 2.2–4.0 kbar.  相似文献   
10.
his study presents the first and detail field investigations of exposed deposits at proximal sections of the Barombi Mbo Maar (BMM), NE Mt Cameroon, with the aim of documenting its past activity, providing insight on the stratigraphic distribution, depositional process, and evolution of the eruptive sequences during its formation. Field evidence reveals that the BMM deposit is about 126m thick, of which about 20m is buried lowermost under the lake level and covered by vegetation. Based on variation in pyroclastic facies within the deposit, it can be divided into three main stratigraphic units: U1, U2 and U3. Interpretation of these features indicates that U1 consists of alternating lapilli-ash-lapilli beds series, in which fallout derived individual lapilli-rich beds are demarcated by surges deposits made up of thin, fine-grained and consolidated ash-beds that are well-defined, well-sorted and laterally continuous in outcrop scale. U2, a pyroclastic fall-derived unit, shows crudely lenticular stratified scoriaceous layers, in which many fluidal and spindle bombs-rich lapilli-beds are separated by very thin, coarse-vesiculatedash-beds, overlain by a mantle xenolith- and accidental lithic-rich explosive breccia, and massive lapilli tuff and lapillistone. U3 displays a series of surges and pyroclastic fall layers. Emplacement processes were largely controlled by fallout deposition and turbulent diluted pyroclastic density currents under “dry” and “wet” conditions. The eruptive activity evolved in a series of initial phreatic eruptions, which gradually became phreatomagmatic, followed by a phreato-Strombolian and a violent phreatomagmatic fragmentation. A relatively long-time break, demonstrated by a paleosol between U2 and U3, would have permitted the feeding of the root zone or the prominent crater by the water that sustained the next eruptive episode, dominated by subsequent phreatomagmatic eruptions. These preliminary results require complementary studies, such as geochemistry, for a better understanding of the changes in the eruptive styles, and to develop more constraints on the maar’s polygenetic origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号