首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  地质学   15篇
  2016年   5篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 140 毫秒
1.
Mantle derived xenoliths in India are known to occur in the Proterozoic ultrapotassic rocks like kimberlites from Dharwar and Bastar craton and Mesozoic alkali igneous rocks like lamrophyres, nephelinites and basanites. The xenoliths in kimberlites are represented by garnet harzburgites, lherzolites, wehrlite, olivine clinopyroxenites and kyaniteeclogite varieties. The PT conditions estimated for xenoliths from the Dharwar craton suggest that the lithosphere was at least 185 km thick during the Mid-Proterozoic period. The ultrabasic and eclogite xenoliths have been derived from depths of 100–180 km and 75–150 km respectively. The Kalyandurg and Brahmanpalle clusters have sampled the typical Archaean subcontinental lithospheric mantle (SCLM) with a low geotherm (35 mW/m2) and harzburgitic to lherzolitic rocks with median Xmg olivine > 0.93. The base of the depleted lithosphere at 185–195 km depth is marked by a 10–15 km layer of strongly metasomatised peridotites (Xmg olivine > ∼0.88). The Anampalle and Wajrakarur clusters 60 km to the NW show a distinctly different SCLM; it has a higher geotherm (37.5 to 40 mW/m2) and contains few subcalcic harzburgites, and has a median Xmg olivine = 0.925. In contrast, the kimberlites of the Uravakonda and WK-7 clusters sampled quite fertile (median Xmg olivine ∼0.915) SCLM with an elevated geotherm (> 40 mW/m2). The lamrophyres, basanites and melanephelinites associated with the Deccan Volcanic Province entrain both ultramafic and mafic xenoliths. The ultramafic group is represented by (i) spinel lherzolites, harzburgites, and (ii) pyroxenites. Single pyroxene granulite and two pyroxene granulites constitutes the mafic group. Temperature estimates for the West Coast xenoliths indicate equilibration temperatures of 500–900°C while the pressure estimates vary between 6–11 kbar corresponding to depths of 20–35 km. This elevated geotherm implies that the region is characterized by abnormally high heat flow, which is also supported by the presence of linear array of hot springs along the West Coast. Spinel peridotite xenoliths entrained in the basanites and melanephelinites from the Kutch show low equilibrium temperatures (884–972°C). The estimated pressures obtained on the basis of the absence of both plagioclase and garnet in the xenoliths and by referring the temperatures to the West Coast geotherm is ∼ 15 kbar (40–45 km depth). The minimum heat flow of 60 to 70 mW/m2 has been computed for the Kutch xenolith (Bhujia hill), which is closely comparable to the oceanic geotherm. Xenolith studies from the West Coast and Kutch indicate that the SCLM beneath is strongly metasomatised although the style of metasomatism is different from that below the Dharwar Craton.  相似文献
2.
The Siddanpalli kimberlites constitute a newly discovered cluster (SKC) of Mesoproterozoic (1090 Ma) dykes occurring in the granite-greenstone terrain of the Gadwal area in the Eastern Dharwar Craton (EDC), Southern India. They belong to coherent facies and contain serpentinized olivines (two generations), phlogopite, spinel, perovskite, ilmenite, apatite, carbonate and garnet xenocrysts. A peculiar feature of these kimberlites is the abundance of carbonate and limestone xenoliths of the eroded platformal Proterozoic (Purana) sedimentary cover of Kurnool/Bhima age. Chemically, the Siddanpalli dykes are the most magnesium-rich (up to 35 wt.% MgO) and silica-undersaturated (SiO2?相似文献
3.
A number of limestone and metasomatised carbonate xenoliths occur in the 1,090 Ma Siddanpalli kimberlite cluster, Raichur kimberlite Field, Eastern Dharwar craton, southern India. These xenoliths are inferred to have been derived from the carbonate horizons of the Kurnool (Palnad) and Bhima Proterozoic basins and provide evidence for a connection between these basins in the geological past. A revised Mesoproterozoic age is proposed for the Bhima and Kurnool (Palnad) basins based on this kimberlite association and is in agreement with similar proposals made recently for the Chattisgarh and Upper Vindhyan sediments in Central India. The observed Bhima–Kurnool interbasinal uplift may have been caused by: (1) extension- or plume-related mafic alkaline magmatism that included the emplacement of the southern Indian kimberlites at ~1.1 Ga, (2) mantle plume-related doming of the peninsular India during the Cretaceous, or (3) Quaternary differential uplift in this region. It is not possible, with the currently available geological information to constrain the exact timing of this uplift. The deep erosion of primary diamond sources in the Raichur kimberlite Field in the upper reaches of the Krishna River caused by this uplift could be the elusive source of the alluvial diamonds of the Krishna valley. Mesoproterozoic sedimentary basins can host world class unconformity-type uranium deposits. In light of its inferred Mesoproterozoic age, a more detailed stratigraphic and metallogenic analysis of the Kurnool basin is suggested for uranium exploration.  相似文献
4.
We report a rare accessory groundmass mineral of K-rich titanate, having a composition close to that of potassium triskaidecatitanate (K2Ti13O27), from an underground drill-core sample of ultrapotassic rock from southwestern part of the Jharia coal field in the Damodar valley, at the northern margin of the Singhbhum craton, Eastern India. Potassium triskaidecatitanate is regarded as a typomorphic mineral of orangeites (Group II kimberlites) of Kaapvaal craton, southern Africa, and its occurrence in the Jharia ultrapotassic rock is significant since ultrapotassic suite of rocks elsewhere from the Damodar valley have been recently suggested to be peralkaline lamproites based on mineral-genetic classification. The important role played by a unique geodynamic setting (involving a thinned metasomatised lithospheric mantle and inheritance of an Archaean subduction component) at the northern margin of the Singhbhum craton in deciding the petrological diversity of the early Cretaceous ultrapotassic intrusives from the Damodar valley is highlighted in this study.  相似文献
5.
We report the occurrence of garnierite (a general term referring to Ni-Mg bearing hydrous silicates in laterites) from the crater-facies Tokapal kimberlite of the Bastar craton, Central India. Garnierite occurs as discrete ovoid or amoeboid segregations (up to 200 mm) or as veinlets with up to 18.1 wt% NiO and high iron contents (up to 36.2 wt% FeOT). Chemical composition of the garnierite implies its derivation from a magnesium-rich protolith. Extensive lateritisation of the large crater-facies (~2.5 km diameter) saucer-shaped kimberlite under tropical weathering conditions, aided by suitable topography, drainage and favourable structural set-up, are the factors inferred to be responsible for the formation of garnierite in the Tokapal system. As lateritic nickel ores constitute significant resources for nickel exploration, the perspective of the Tokapal kimberlite as a nickel prospect needs to be investigated.  相似文献
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号