首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
地球物理   3篇
地质学   14篇
海洋学   3篇
自然地理   5篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1991年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The passive Eastern Continental Margin of India (ECMI) evolved during the break up of India and East Antarctica in the Early Cretaceous. The 85°E ridge is a prominent linear aseismic feature extending from the Afanasy Nikitin Seamounts northward to the Mahanadi basin along the ECMI. Earlier workers have interpreted the ridge to be a prominent hot spot trail. In the absence of conclusive data, the extension of the ridge towards its northern extremity below the thick Bengal Fan sediments was a matter of postulation. In the present study, interpretation of high resolution 2-D reflection data from the Mahanadi Offshore Basin, located in the northern part of the ridge, unequivocally indicates continuation of the ridge across the continent–ocean boundary into the slope and shelf tracts of the ECMI. Its morphology and internal architecture suggest a volcanic plume related origin that can be correlated with the activity of the Kerguelen hot spot in the nascent Indian Ocean. In the continental region, the plume related volcanic activity appears to have obliterated all seismic features typical of continental crust. The deeper oceanic crust, over which the hot spot plume erupted, shows the presence of linear NS aligned basement highs, corresponding with the ridge, underlain by a depressed Moho discontinuity. In the deep oceanic basin, the ridge influences the sediment dispersal pattern from the Early Cretaceous (?)/early part of Late Cretaceous times till the end of Oligocene, which is an important aspect for understanding the hydrocarbon potential of the basin.  相似文献   
2.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   
3.
4.
Although the principle of uniformitarianism may be applied to the Precambrian sedimentary record as a whole, certain periods of the Archaean and Palaeoproterozoic witnessed a changing pattern of prime influences controlling the depositional systems. This paper examines the major controls on sedimentation systems and environments during the Archaean and Palaeoproterozoic within the broader perspective of Earth evolution. Earth's earliest sedimentary system (4.4?-3.7 Ga) was presumably comprised of deep oceanic realms and probably influenced primarily by bolide impacts, major tsunamis, localized traction and global contour current patterns, and bathymetry. As continental crust began to form, the impact-dominated, tsunami type sedimentation gave way to wider varieties of sedimentary environments, known from the oldest sedimentary records. During early continental crustal evolution (c. 3.7–2.7 Ga), sedimentation was essentially of greenstone-type. Volcanic and volcaniclastic rocks were the major components of the greenstone belts, associated with thin carbonates, stromatolitic evaporites, BIF, pelites and quartzites and lesser synorogenic turbidites, conglomerates and sandstones. Volcanism and active tectonism (reflecting dynamic depositional settings during island arc and proto-continental nucleus formation) were the predominant factors influencing sedimentation during this phase of Earth evolution. Transgressions and regressions under the combined influence of tectonics and eustasy are reflected in fining- and coarsening-upwards successions from the proto-cratonic settings; low freeboard enabled the transgression to affect large areas of the proto-cratons. As the earliest, relatively stable craton formed, through a combination of plate tectonic and mantle-thermal processes, continents and supercontinents with the potential for supercontinental cycles started to influence sedimentation strongly. Major controls on Neoarchaean–Palaeoproterozoic sedimentation systems (2.7–1.6 Ga) were provided by a combination of superplume events and plate tectonics. Two global-scale ‘superevents’ at c. 2.7 Ga and c. 2.2–1.8 Ga were accompanied by eustatic rise concomitant with peaks in crustal growth rates, and large epeiric seas developed. The operation of first-order controls leading to development of vast chemical sedimentary platforms in these epeiric seas and concomitant palaeo-atmospheric and palaeo-oceanic evolution combined to provide a second-order control on global sedimentary systems in the Neoarchaean–Palaeoproterozoic period. The supercontinental cycle had become well established by the end of the Palaeoproterozoic, with the existence of large cratons across broad spectrums of palaeolatitude enabling erg development. The entire spectrum of sedimentary systems and environments came into existence by c. 1.8 Ga, prime influences on sedimentation and depositional system possibly remaining essentially uniform thereafter.  相似文献   
5.
The main Karoo Basin of South Africa is a Late Carboniferous–Middle Jurassic retroarc foreland fill, developed in front of the Cape Fold Belt (CFB) in relation to subduction of the palaeo-Pacific plate underneath the Gondwana plate. The Karoo sedimentary fill corresponds to a first-order sequence, with the basal and top contacts marking profound changes in the tectonic setting, i.e. from extensional to foreland and from foreland to extensional, respectively. Sedimentation within the Karoo Foreland Basin was closely controlled by orogenic cycles of loading and unloading in the CFB. During orogenic loading, episodes of subsidence and increase in accommodation adjacent to the orogen correlate to episodes of uplift and decrease in accommodation away from the thrust-fold belt. During orogenic unloading the reverse occurred. As a consequence, the depocentre of the Karoo Basin alternated between the proximal region, during orogenic loading, and the distal region, during orogenic unloading. Orogenic loading dominated during the Late Carboniferous–Middle Triassic interval, leading to the accumulation of thick foredeep sequences with much thinner forebulge correlatives. The Late Triassic–Middle Jurassic interval was dominated by orogenic unloading, with deposition taking place in the distal region of the foreland system and coeval bypass and reworking of the older foredeep sequences. The out of phase history of base-level changes generated contrasting stratigraphies between the proximal and distal regions of the foreland system separated by a stratigraphic hinge line. The patterns of hinge line migration show the flexural peripheral bulge advancing towards the craton during the Late Carboniferous–Permian interval in response to the progradation of the orogenic front. The orogenward migration of the foreland system recorded during the Triassic–Middle Jurassic may be attributed to piggyback thrusting accompanied by a retrogradation of the centre of weight within the orogenic belt during orogenic loading (Early Middle Triassic) or to the retrogradation of the orogenic load through the erosion of the orogenic front during times of orogenic unloading (Late Triassic–Middle Jurassic).  相似文献   
6.
A three‐dimensional quantitative stratigraphic forward model is employed to investigate the controls leading to the Messinian events in the lacustrine Pannonian Basin of Central Paratethys, and the link between the Messinian salinity crisis in the Mediterranean and the late Miocene‐Pliocene stratigraphy of the Pannonian Basin. Subsurface geological data show that a prominent unconformity surface formed during Messinian time in the Pannonian Basin associated with a sudden forced regression, abrupt basinward shift of facies and a subsequent, prolonged lowstand normal regression. The lowstand prograding series filled up the shallow basin fast, while, at the same time, the marginal areas of the basin were subject to tectonic inversion. The Dionisos program used in this research is built on a nonlinear water‐driven sediment diffusion process, and it employs multiple sediment classes, basin flexure and compaction. Four different scenarios were built in the experiments to test possible basin histories with different rates and timing of tectonic inversion. Each scenario was modelled in two versions: including and not including a lake‐level fall in the Messinian. The results confirm that the Pannonian Basin in the study area has undergone a tectonic inversion since the Messinian, although the exact rates of uplift at different locations remain uncertain. The unconformity and the observed stratigraphic architecture and facies pattern could be modelled adequately only in the versions that applied a Messinian lake‐level fall. Our research concludes that the Messinian unconformity in the Pannonian Basin was caused by an absolute lake‐level drop, likely linked to the desiccation of the Mediterranean, followed by subsidence and normal regression in the basin centre and concomitant tectonic inversion and uplift along the basin margins.  相似文献   
7.
The non‐unique variability highlighted by Burgess & Prince (Basin Res. 2015, 27 , 351) (i.e. the origin and timing of maximum flooding surfaces, maximum regressive surfaces and subaerial unconformities; the process of topset aggradation in relation with the various types of shoreline trajectory; and the multiple controls that may affect the progradation and retrogradation of a shoreline) is irrelevant to the workflow of sequence stratigraphy. What is relevant is the observation of the unique stratal geometries that are diagnostic to the definition of all units and surfaces of sequence stratigraphy. In downstream‐controlled settings, these unique stratal stacking patterns relate to the forced regressive, normal regressive and transgressive shoreline trajectories. Multiple controls interplay during the formation of each type of stacking pattern, including accommodation, sediment supply and the energy of the sediment‐transport agents. This interplay explains the non‐unique variability, but does not change the unique criteria that afford a consistent application of sequence stratigraphy. Failure to rationalize the non‐unique variability within the context of unique stratal geometries is counterproductive, and obscures the simple workflow of sequence stratigraphy.  相似文献   
8.
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3–6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences.

The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability.

This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.  相似文献   

9.
10.
Incorporation of the Kaapvaal craton within a speculative Neoarchaean–Palaeoproterozoic supercontinent has long been debated, and this idea provides a potential solution to solving the apparently enigmatic provenance of the huge quantities of gold within the famous Witwatersrand auriferous deposits of Kaapvaal. Within a framework of a postulated Neoarchaean “Kenorland” (“northern”; present-day reference) supercontinent, we examine possible “southern” cratons that may have been contiguous with Kaapvaal: Pilbara, Zimbabwe, Dharwar, São Francisco, Amazon, Congo. Brief reviews of their basic geology and inferred evolution in syn-Witwatersrand basin times (c. 3.1–2.8 Ga) show no obvious support for any such supercontinental amalgamations. An alternative idea to explain a measure of gross similarity amongst several Neoarchaean cratons is through global events, such as a c. 3125–3000 Ma cratonic-scale erosive event interpreted for both Pilbara and Kaapvaal, and a much more widespread magmatic event at c. 2760–2680 Ma. We postulate that a global superplume event at c. 3.0 Ga included a plume beneath the Kaapvaal cratonic nucleus, thus halting any subduction around that terrane due to the thermal anomaly. Such a speculative global magmatic event is assumed to have enhanced production of juvenile oceanic crust at mid-ocean ridges, including those “offshore” of the thermally elevated Kaapvaal nucleus. Intra-oceanic obduction complexes may have built up fairly rapidly under such conditions, globally, and once the plume event had abated, “normal” plate tectonics would have resulted in composite (greenstone-tonalite, possibly also including granite) terranes accreting with nuclei such as Kaapvaal. This enhanced plume-related cratonic growth can be seen as a rapid accretion event. Formation of the envisaged ophiolite complexes possibly encompassed deformation-related first-order concentration of gold, and once accretion occurred around Kaapvaal's nucleus, from north and west (present-day frame of reference), a second-order (deformation-related) gold concentration may have resulted. The third order of gold concentration would logically have occurred once placer systems reworked detritus derived from the orogens along the N and W margins of Kaapvaal. Such conditions and placer gold deposits are known from many Neoarchaean cratons. The initial source of gold was presumably from the much hotter Mesoarchaean mantle and may have been related to major changes in Earth's tectonic regime at c. 3.0 Ga. The unique nature of Kaapvaal is probably its early stabilization, enabling formation of a complex flexural foreland basin system, in which vast quantities of placer sediments and heavy minerals could be deposited, and preserved from younger denudation through a unique post-Witwatersrand history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号