首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   6篇
  国内免费   4篇
测绘学   3篇
大气科学   51篇
地球物理   27篇
地质学   276篇
海洋学   27篇
天文学   18篇
自然地理   83篇
  2014年   5篇
  2013年   30篇
  2012年   8篇
  2011年   10篇
  2010年   11篇
  2009年   25篇
  2008年   10篇
  2007年   9篇
  2006年   19篇
  2005年   24篇
  2004年   11篇
  2003年   11篇
  2002年   13篇
  2001年   9篇
  2000年   13篇
  1999年   9篇
  1998年   7篇
  1997年   29篇
  1996年   17篇
  1995年   14篇
  1994年   16篇
  1993年   20篇
  1992年   19篇
  1991年   16篇
  1990年   11篇
  1989年   18篇
  1988年   12篇
  1987年   10篇
  1986年   11篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   7篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1969年   3篇
  1967年   4篇
  1966年   3篇
  1965年   1篇
  1964年   1篇
  1960年   1篇
排序方式: 共有485条查询结果,搜索用时 916 毫秒
1.
Abstract— The possibility of volcanism on Mercury has been a topic of discussion since Mariner 10 returned images of half the planet's surface showing widespread plains material. These plains could be volcanic or lobate crater ejecta. An assessment of the mechanics of the ascent and eruption of magma shows that it is possible to have widespread volcanism, no volcanism on the surface whatsoever, or some range in between. It is difficult to distinguish between a lava flow and lobate crater ejecta based on morphology and morphometry. No definite volcanic features have been identified on Mercury. However, known lunar volcanic features cannot be identified in images with similar resolutions and viewing geometries as the Mariner 10 dataset. Examination of high‐resolution, low Sun angle Mariner 10 images reveals several features which are interpreted to be flow fronts; it is unclear if these are volcanic flows or ejecta flows. This analysis implies that a clear assessment of volcanism on Mercury must wait for better data. MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) will take images with viewing geometries and resolutions appropriate for the identification of such features.  相似文献   
2.
A unique sequence of Late Saalian, Eemian and Early Weichselian strata is exposed in a coastal outcrop at Mommark in the western Baltic. The sedimentary facies and faunas reflect palaeoenvironmental changes from an initial freshwater lake followed by marine transgression and interglacial deposition in a palaeo-Baltic sea. The upper part of the Eemian marine record indicates regression followed by lacustrine sedimentation and deposition of Early Weichselian aeolian sediments, which are truncated by an erosional unconformity overlain by a till bed. The lower and middle parts of the sequence have previously been correlated with the European glacial-interglacial stratigraphy on the basis of pollen analysis, while the upper part has been dated for the present study using optically stimulated luminescence (OSL) of samples from the aeolian and glacial deposits. A similar complete glacial-interglacial-glacial succession has not previously been recorded from this area. The Mommark sequence of conformable strata has been subjected to lateral compression, evidenced by folding and low-angle reverse faults. Seismic records from the adjacent waters in the western Baltic reveal a system of buried Quaternary valleys in the area. It is suggested that the interglacial deposition took place in a basin within one of these valleys and that a slab constituting the Mommark sequence, originating from the margin of a valley, has been glaciotectonically displaced northwestwards to the present location.  相似文献   
3.
4.
5.
6.
7.
Phase relationships on the vapor-saturated liquidus surfacein the system CaO-MgO-CO2-H2O have been deduced from data inthe systems CaO CO2-H2O, CaO-MgO-CO2, and MgO-CO2-H2O, and frompreliminary experiments in the quaternary system. These areillustrated in composition tetrahedra, and in isobaric sectionsthrough the petrogenetic model. The univariant PT curve forthe beginning of melting lies between 625? C and 600? C in thepressure range 10 bars to 4 kilobars, in the presence of a vaporphase rich in H2O. The curve is divided into three sectionsby two invariant points, each section having a different primarymagnesian phase involved in the melting reaction. Periclaseoccurs on the low-pressure section (less than about 1 kilobar),and with increasing pressure first brucite and then dolomitebecome stable on the liquidus. The pressure of the second invariantpoint, above which dolomite is stable on the liquidus, is notknown. The effect of FeO as an additional component is considered.Processes of crystallization resulting from changes in temperature,in pressure, and in the composition of the vapor phase are discussed.These processes are applied to the crystallization and differentiationof carbonatite magmas, and the reverse processes involving fusionare applied to the metamorphism of dolomites. Crystallizationdifferentiation of a carbonatite magma could produce the sequenceof intrusion observed at some carbonatite complexes: calcitics?vite, followed by ankeritic s?vite, and finally sideriticcarbonatite. Partial melting may occur during the thermal metamorphismof dolomites, but melting is unlikely during regional metamorphism.  相似文献   
8.
9.
Models of continental crustal magmagenesis commonly invoke theinteraction of mafic mantle-derived magma and continental crustto explain geochemical and petrologic characteristics of crustalvolcanic and plutonic rocks. This interaction and the specificmechanisms of crustal contamination associated with it are poorlyunderstood. An excellent opportunity to study the progressiveeffects of crustal contamination is offered by the compositeplutons of the Alaska Range, a series of nine early Tertiary,multiply intruded, compositionally zoned (Peridotite to granite)plutons. Large initial Sr and Nd isotopic contrasts betweenthe crustal country rock and likely parental magmas allow evaluationof the mechanisms and extents of crustal contamination thataccompanied the crystallization of these ultra-mafic throughgranitic rocks. Three contamination processes are distinguishedin these plutons. The most obvious of these is assimilationof crustal country rock concurrent with magmatic fractionalcrystallization (AFC), as indicated by a general trend towardcrustal-like isotopic signatures with increasing differentiation.Second, many ultramafic and mafic rocks have late-stage phenocrystreaction and orthocumulate textures that suggest interactionwith felsic melt. These rocks also have variable and enrichedisotopic compositions that suggest that this felsic melt wasisotopically enriched and probably derived from crustal countryrock. Partial melt from the flysch country rock may have reactedwith and contaminated these partly crystalline magmas followingthe precipitation and accumulation of the cumulus phenocrystsbut before complete solidification of the magma. This suggeststhat in magmatic mush (especially of ultramafic composition)crystallizing in continental crust, a second distinct processof crustal contamination may be super imposed on AFC or magmamixing involving the main magma body. Finally, nearly all rocks,including mafic and ultramafic rocks, have (87Sr/86Sr)i thatare too high, and (T) Nd that are too low, to represent theexpected isotopic composition of typical depleted mantle. However,gabbro xenoliths with typical depicted-mantle isotopic compositionsare found in the plutons. This situation requires either anadditional enriched mantle component to provide the parentalmagma for these plutons, or some mechanism of crustal contaminationof the parent magma that did not cause significant crystallizationand differentiation of the magma to more felsic compositions.Thermodynamic modeling indicates that assimilation of alkali-andwater-rich partial melt of the metapelite country rock by fractionating,near-liquidus basaltic magma could cause significant contaminationwhile suppressing significant crystallization and differentiation. KEY WORDS: crustal contamination; Alaska Range; isotope geochemistry; zoned plutons; assimilation *Corresponding author. e-mail: preiners{at}u.washington.edu; fax: (206) 543-3836.  相似文献   
10.
Two isotopically distinct but otherwise chemically similar leucogranitesuites in the Proterozoic Horney Peak Granite, Black Hills,South Dakota, have contrasting light rare earth element (LREE)concentrations. Most samples of a relatively 18O-depleted suitehave LREE- enriched, chondrite-normalized patterns, typicalof melts derived from metasedimentary protoliths, whereas allsamples of the regionally significant, relatively 18O-enrichedsuite have LREE-depleted patterns. The latter patterns are interpretedto have resulted from disequilibrium melting of schists. Monaziteand perhaps other accessory minerals remained armored by biotiteand garnet which did not partake in the muscovite dehydration-meltingreaction that produced LREE-depleted melts. The REE concentrationsin the LREE-depleted samples are below saturation levels formonazite at reasonable melting temperatures and melt water contents,whereas the REE concentrations in the LREE-enriched samplesyield 700–800C monazite saturation temperatures, reasonablefor biotite dehydration-melting reactions. LREE depletions,analogous to those in the LREE-depleted granites, are also foundin leucosomes of partially molten schists, thought to be theprotolith for the granite. In contrast, the melanosomes holdthe accessory minerals and bulk of the LREEs. KEY WORDS: accessory minerals; leucogranites; Black Hills; monazite; partial melting *Corresponding author at Department of Geological Sciences, University of Missouri. Telephone: 314-884-6463. Fax: 314-882-5458. e-mail: geolpin{at}showme.missouri.edu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号