首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
地球物理   9篇
地质学   8篇
天文学   2篇
自然地理   2篇
  2022年   1篇
  2019年   2篇
  2016年   1篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Across North and South America, the final millennia of the Pleistocene saw dramatic changes in climate, vegetation, fauna, fire regime, and other local and regional paleo-environmental characteristics. Rapid climate shifts following the Last Glacial Maximum (LGM) exerted a first-order influence, but abrupt post-glacial shifts in vegetation composition, vegetation structure, and fire regime also coincided with human arrival and transformative faunal extinctions in the Americas. We propose a model of post-glacial vegetation change in response to climatic drivers, punctuated by local fire regime shifts in response to megaherbivore-driven fuel changes and anthropogenic ignitions. The abrupt appearance of humans, disappearance of megaherbivores, and resulting changes in New World fire systems were transformative events that should not be dismissed in favor of climate-only interpretations of post-glacial paleo-environmental shifts in the Americas. Fire is a mechanism by which small human populations can have broad impacts, and growing evidence suggests that early anthropogenic influences on regional, even global, paleo-environments should be tested alongside other potential causal mechanisms.  相似文献   
2.
Landscape evolution: the interactions of tectonics and surface processes   总被引:4,自引:0,他引:4  
  相似文献   
3.
Flooding on the German Rhine during the 20th century was tested for trends and assessed to identify causal mechanisms driving worsening of flooding. A review of previous research outlines the range of impacts due to climate change, land‐use shifts, and river regulation. Analysis of hydrologic data, especially of the long record at Cologne, documents statistically significant increases in both flood magnitudes and frequencies. Specific‐gauge analysis, which isolates the effects of channel modification, documents that 20th century river engineering has caused little of the observed increase in flooding on the German Rhine. Precipitation records from the Rhine basin confirm that flood magnification has been driven by upstream factors, including an increase in flood‐producing precipitation of roughly 25% during the past 100 years and increases in runoff yields. In addition, agricultural land‐use records suggest that flood magnification can be partially explained by 20th century trends documenting intensification and industrialization of German agriculture. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
5.
6.
In this investigation, four scenarios were used to quantify the balance between the benefits of levees for flood protection and their potential to increase flood risk using Hazards U.S. Multi-Hazard flood-loss software and hydraulic modeling of the Middle Mississippi River (MMR). The goals of this study were (1) to quantify the flood exposure under different flood-control configurations and (2) to assess the relative contributions of various engineered structures and flood-loss strategies to potential flood losses. Removing all the flood-control structures along the MMR, without buyouts or other mitigation, reduced the average flood stages between 2.3 m (100-year flood) and 2.5 m (500-year), but increased the potential flood losses by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by 155 million for the 100-year flood, but were decreased by $109 million for the 500-year flood. Thus, agricultural levees along the MMR protect against small- to medium-size floods (up to the ~100-year flood level) but cause more damage than they prevent during large floods such as the 500-year flood. Buyout costs for the all the buildings within the 500-year floodplain downstream of urban flood-control structures near St. Louis are ~40% less than the cost of repairing the buildings damaged by the 500-year flood. This suggests large-scale buyouts could be the most cost-effective option for flood loss mitigation for properties currently protected by agricultural levees.  相似文献   
7.
Levee effects upon flood levels: an empirical assessment   总被引:1,自引:0,他引:1  
This study used stream gauge records to assess the impact of levees on flood levels, providing an empirical test of theoretical and model predictions of the effects on local flood response. Focusing upon a study area in Illinois and Iowa for which levee records were available, we identified 203 gauges with ≥ 50 years hydrological record, including 15 gauges where a levee was constructed during the period of record. At these sites, step‐change analysis utilizing regression residuals tested levee‐related stage changes and levels of significance and quantified the magnitudes of stage changes. Despite large differences in stream sizes, levee alignments, and degree of floodplain constriction, the post‐levee rating‐curve adjustments showed consistent signatures. For all the study sites, stages for below bankfull (non‐flood) conditions were unaffected by levee construction. For above bankfull (flood) conditions, stages at sites downstream of their associated levees also were statistically indistinguishable before versus after levee construction. However, at all sites upstream of levees or within leveed reaches, stages increased for above bankfull conditions. These increases were abrupt, statistically significant, and generally large in magnitude – ranging up to 2.3 m (Wabash River at Mt. Carmel, IL). Stage increases began when discharge increased above bankfull flow and generally increased in magnitude with discharge until the associated levee(s) were overtopped. Detailed site assessments and supplementary data available from some sites helped document the dominant mechanisms by which levees can increase flood levels. Levee construction reduces the area of the floodplain open to storage of flood waters and reduces the width of the floodplain open to conveyance of flood flow. Floodplain conveyance often is underestimated or ignored, but Acoustic Doppler Current Profiler (ADCP) measurements analysed here confirm previous studies that up to 70% or more of the total discharge during large floods (~3% chance flood) can move over the floodplain. Upstream of levees and levee‐related floodplain constriction, backwater effects reduce flow velocities relative to pre‐levee conditions and, thus, increase stages for a given discharge. The empirical results here confirm a variety of theoretical predictions of levee effects but suggest that many one‐dimensional model‐based predictions of levee‐related stage changes may underestimate actual levee impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
8.
Vaduvescu  O.  Aznar Macias  A.  Wilson  T. G.  Zegmott  T.  Pérez Toledo  F. M.  Predatu  M.  Gherase  R.  Pinter  V.  Pozo Nunez  F.  Ulaczyk  K.  Soszyński  I.  Mróz  P.  Wrona  M.  Iwanek  P.  Szymanski  M.  Udalski  A.  Char  F.  Salas Olave  H.  Aravena-Rojas  G.  Vergara  A. C.  Saez  C.  Unda-Sanzana  E.  Alcalde  B.  de Burgos  A.  Nespral  D.  Galera-Rosillo  R.  Amos  N. J.  Hibbert  J.  López-Comazzi  A.  Oey  J.  Serra-Ricart  M.  Licandro  J.  Popescu  M. 《Earth, Moon, and Planets》2022,126(2):1-26
Earth, Moon, and Planets - The Perseverance rover (Mars 2020) mission, the first step in NASA’s Mars Sample Return (MSR) program, will select samples for caching based on their potential to...  相似文献   
9.
Hazus-MH earthquake modeling in the central USA   总被引:2,自引:2,他引:0  
This investigation was undertaken to assess the sensitivity of the Hazus-MH (v2.0) earthquake model to model parameters and to guide the selection of these parameters for realistic earthquake-loss assessment in the central USA. To accomplish these goals, we performed several sensitivity analyses and a validation assessment using earthquake damage surveys from the 2008 M5.2 Mt. Carmel, Illinois earthquake. We evaluated the sensitivity of the Hazus-MH earthquake model to the selection of seismic hazard data, attenuation function, soils data, liquefaction data, and structural fragility curves. These sensitivity analyses revealed that earthquake damage, loss, and casualty estimates are most sensitive to the seismic hazard data and selection of the attenuation function. The selection of the seismic hazard data and attenuation function varied earthquake damages and capital-stock losses by ±68?% and casualty estimates by ±84?%. The validation assessment revealed that Hazus-MH overpredicted observed damages by 68?C221?% depending on the model parameters employed. The model run using region-specific soils, liquefaction, and structure fragility curves produced the most realistic damage estimate (within 68?% of actual damages). Damage estimates using default Hazus-MH parameters were overpredicted by 155?%. The uncertainties identified here are similar to uncertainties recognized in other Hazus-MH validation assessments. Despite uncertainties in Hazus-MH earthquake-loss estimates, such estimates are still useful for planning and response so long as the limitations of the results are properly conveyed to planners, decision makers, emergency responders, and the public.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号