首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   86篇
  国内免费   15篇
测绘学   31篇
大气科学   128篇
地球物理   440篇
地质学   465篇
海洋学   127篇
天文学   308篇
综合类   1篇
自然地理   135篇
  2021年   26篇
  2020年   22篇
  2019年   25篇
  2018年   50篇
  2017年   38篇
  2016年   67篇
  2015年   38篇
  2014年   46篇
  2013年   93篇
  2012年   69篇
  2011年   91篇
  2010年   65篇
  2009年   102篇
  2008年   83篇
  2007年   67篇
  2006年   66篇
  2005年   72篇
  2004年   51篇
  2003年   46篇
  2002年   53篇
  2001年   34篇
  2000年   30篇
  1999年   31篇
  1998年   27篇
  1997年   17篇
  1996年   27篇
  1995年   23篇
  1994年   20篇
  1993年   17篇
  1992年   21篇
  1991年   13篇
  1990年   17篇
  1989年   8篇
  1988年   10篇
  1987年   8篇
  1986年   7篇
  1985年   13篇
  1984年   15篇
  1983年   17篇
  1982年   11篇
  1981年   14篇
  1980年   7篇
  1979年   12篇
  1978年   14篇
  1977年   10篇
  1975年   4篇
  1974年   4篇
  1973年   7篇
  1971年   4篇
  1967年   5篇
排序方式: 共有1635条查询结果,搜索用时 15 毫秒
1.
Simulating land use/cover change (LUCC) and determining its transition rules have been a focus of research for several decades. Previous studies used ordinary logistic regression (OLR) to determine transition rules in cellular automata (CA) modeling of LUCC, which often neglected the spatially non-stationary relationships between driving factors and land use/cover categories. We use an integrated geographically weighted logistic regression (GWLR) CA-Markov method to simulate LUCC from 2001–2011 over 29 towns in the Connecticut River Basin. Results are compared with those obtained from the OLR-CA-Markov method, and the sensitivity of LUCC simulated by the GWLR-CA-Markov method to the spatial non-stationarity-based suitability map is investigated. Analysis of residuals indicates better goodness of fit in model calibration for geographically weighted regression (GWR) than OLR. Coefficients of driving factors indicate that GWLR outperforms OLR in depicting the local suitability of land use/cover categories. Kappa statistics of the simulated maps indicate high agreement with observed land use/cover for both OLR-CA-Markov and GWLR-CA-Markov methods. Similarity in simulation accuracy between the methods suggests that the sensitivity of simulated LUCC to suitability inputs is low with respect to spatial non-stationarity. Therefore, this study provides critical insight on the role of spatial non-stationarity throughout the process of LUCC simulation.  相似文献   
2.
A FORTRAN program, consistent with the commercially available finite element (FE) code ABAQUS, is developed based on a three-dimensional (3D) linear elastic brittle damage constitutive model with two damage criteria. To consider the heterogeneity of rock, the developed FORTRAN program is used to set the stiffness and strength properties of each element of the FE model following a Weibull distribution function. The reliability of the program is assessed against available experimental results for granite cylindrical specimens with a throughgoing, flat and inclined fissure. The calibration procedure of the material parameters is explained in detail, and it is shown that the compressive to tensile strength ratio can have a substantial influence on the failure response of the specimens. Numerical simulations are conducted for models with different levels of heterogeneity. The results show a smaller load bearing capacity for models with less homogeneity, representing gradual coalescence of fully damaged elements forming throughout the models during loading. The maximum load bearing capacity is studied for various combinations of inclination angles of two centrally aligned, throughgoing and flat fissures of equal length embedded in cylindrical models under uniaxial and multiaxial loading conditions. The key role of the compressive to tensile strength ratio is highlighted by repeating certain simulations with a lower compressive to tensile strength ratio. It is proven that the peak loads of the rock models with sufficiently small compressive to tensile strength ratios containing two throughgoing fissures of equal length are similar, provided that the minimum inclination angles of the models are the same. The results are presented and discussed with respect to the existing experimental findings in the literature, suggesting that the numerical model applied in this study can provide useful insight into the failure behaviour of rock-like materials.  相似文献   
3.
This paper presents a detailed numerical study of the retrogressive failure of landslides in sensitive clays. The dynamic modelling of the landslides is carried out using a novel continuum approach, the particle finite element method, complemented with an elastoviscoplastic constitutive model. The multiwedge failure mode in the collapse is captured successfully, and the multiple retrogressive failures that have been widely observed in landslides in sensitive clays are reproduced with the failure mechanism, the kinematics, and the deposition being discussed in detail. Special attention has been paid to the role of the clay sensitivity on each retrogressive failure as well as on the final retrogression distance and the final run‐out distance via parametric studies. Moreover, the effects of the viscosity of sensitive clays on the failure are also investigated for different clay sensitivities.  相似文献   
4.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
5.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   
6.
In principle, many climate policymakers have accepted that large-scale carbon dioxide removal (CDR) is necessary to meet the Paris Agreement’s mitigation targets, but they have avoided proposing by whom CDR might be delivered. Given its role in international climate policy, the European Union (EU) might be expected to lead the way. But among EU climate policymakers so far there is little talk on CDR, let alone action. Here we assess how best to ‘target’ CDR to motivate EU policymakers exploring which CDR target strategy may work best to start dealing with CDR on a meaningful scale. A comprehensive CDR approach would focus on delivering the CDR volumes required from the EU by 2100, approximately at least 50 Gigatonnes (Gt) CO2, according to global model simulations aiming to keep warming below 2°C. A limited CDR approach would focus on an intermediate target to deliver the CDR needed to reach ‘net zero emissions’ (i.e. the gross negative emissions needed to offset residual positive emissions that are too expensive or even impossible to mitigate). We argue that a comprehensive CDR approach may be too intimidating for EU policymakers. A limited CDR approach that only addresses the necessary steps to reach the (intermediate) target of ‘net zero emissions’ is arguably more achievable, since it is a better match to the existing policy paradigm and would allow for a pragmatic phase-in of CDR while avoiding outright resistance by environmental NGOs and the broader public.

Key policy insights

  • Making CDR an integral part of EU climate policy has the potential to significantly reshape the policy landscape.

  • Burden sharing considerations would probably play a major role, with comprehensive CDR prolonging the disparity and tensions between progressives and laggards.

  • Introducing limited CDR in the context of ‘net zero’ pathways would retain a visible primary focus on decarbonization but acknowledge the need for a significant enhancement of removals via ‘natural’ and/or ‘engineered’ sinks.

  • A decarbonization approach that intends to lead to a low level of ‘residual emissions’ (to be tackled by a pragmatic phase-in of CDR) should be the priority of EU climate policy.

  相似文献   
7.
8.
Decline of native pelagic species in estuarine systems is an increasing problem, especially for native fishes in the San Francisco Estuary and Delta (SFE-D). Addressing these losses depends on understanding trophodynamics in the food web that supports threatened species. We quantified the role of microzooplankton (heterotrophic–mixotrophic protists <200 μm) in the food web of the upper SFE-D. We sampled protist plankton abundance and composition at two sites (Suisun Bay and Grizzly Bay) approximately monthly from February 2004 to August 2005 and conducted dilution experiments during spring and summer of both years in Suisun Bay. Heterotrophs dominated the protist community in Suisun Bay and Grizzly Bay, particularly in the <20 μm size range, and peaks in protistan microzooplankton biomass were associated with high phytoplankton biomass. In both years, microzooplankton grazing rates were high (0.5–0.7 day−1) during the spring and lower (~0.2 day−1) during summer. Phytoplankton growth rates peaked in April 2004 (~0.7 day−1) but were much lower (<0.1 day−1) in spring 2005, despite relatively high abundance. Thus, microzooplankton grazing consumed as much as 73% of phytoplankton standing stock during spring and ~15% of standing stock during summer of both years. Combined with earlier results, we conclude that microzooplankton can be important mediators of carbon and energy flow in the upper SFE-D and may be a “source” to the metazoan food web.  相似文献   
9.
Water in the subsurface of the Earth’s cold regions—and possibly the subsurface of Mars—resides in the liquid, vapor, and ice phases. However, relatively few simulations addressing full three-phase, nonisothermal water dynamics in below-freezing porous media have been undertaken. This paper presents a nonisothermal, three-phase approach to modeling water migration in partially frozen porous media. Conservation equations for water (as ice, liquid, and vapor) and a single gas species (in the gas phase and dissolved in water) are coupled to a heat transport equation and solved by a finite-volume method with fully implicit time stepping. Particular attention is given to the method of spatial differencing when the pore space is partially filled with ice. The numerical model is able to reproduce freezing-induced water redistribution observed in laboratory experiments. Simulations of Earth permafrost dynamics and of the formation and evolution of a planetary-scale cryosphere on Mars demonstrate the new capabilities.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号