首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   15篇
  国内免费   7篇
测绘学   4篇
大气科学   28篇
地球物理   110篇
地质学   184篇
海洋学   61篇
天文学   56篇
综合类   1篇
自然地理   53篇
  2021年   10篇
  2020年   9篇
  2019年   13篇
  2018年   11篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   14篇
  2013年   25篇
  2012年   32篇
  2011年   29篇
  2010年   21篇
  2009年   29篇
  2008年   31篇
  2007年   28篇
  2006年   13篇
  2005年   16篇
  2004年   21篇
  2003年   16篇
  2002年   19篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   6篇
  1995年   6篇
  1994年   2篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   7篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1960年   1篇
  1957年   1篇
  1950年   1篇
排序方式: 共有497条查询结果,搜索用时 15 毫秒
1.
Side channel construction is a common intervention applied to increase a river's conveyance capacity and to increase its ecological value. Past modelling efforts suggest two mechanisms affecting the morphodynamic change of a side channel: (1) a difference in channel slope between the side channel and the main channel and (2) bend flow just upstream of the bifurcation. The objective of this paper was to assess the conditions under which side channels generally aggrade or degrade and to assess the characteristic timescales of the associated morphological change. We use a one‐dimensional bifurcation model to predict the development of side channel systems and the characteristic timescale for a wide range of conditions. We then compare these results to multitemporal aerial images of four side channel systems. We consider the following mechanisms at the bifurcation to be important for side channel development: sediment diversion due to the bifurcation angle, sediment diversion due to the transverse bed slope, partitioning of suspended load, mixed sediment processes such as sorting at the bifurcation, bank erosion, deposition due to vegetation, and floodplain sedimentation. There are limitations to using a one‐dimensional numerical model as it can only account for these mechanisms in a parametrized manner, but the model reproduces general behaviour of the natural side channels until floodplain‐forming processes become important. The main result is a set of stability diagrams with key model parameters that can be used to assess the development of a side channel system and the associated timescale, which will aid in the future design and maintenance of side channel systems. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
2.
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate.  相似文献   
3.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
4.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
5.
The Shenandoah Watershed Study (established in 1979) and the Virginia Trout Stream Sensitivity Study (established in 1987) serve to increase understanding of hydrological and biogeochemical changes in western Virginia mountain streams that occur in response to acidic deposition and other ecosystem stressors. The SWAS-VTSSS program has evolved over its 40+ year history to consist of a temporally robust and spatially stratified monitoring framework. Currently stream water is sampled for water quality bi-hourly during high-flow events at three sites and weekly at four sites within Shenandoah National Park (SHEN), and quarterly at 72 sites and on an approximately decadal frequency at ~450 sites within the wider western Virginia Appalachian region. Stream water is evaluated for pH, acid neutralizing capacity (ANC), base cations (calcium, magnesium, sodium and potassium ion), acid anions (sulphate, nitrate and chloride), silica, ammonium, and conductivity with a subset of samples evaluated for monomeric aluminium and dissolved organic carbon. Hourly stream discharge (four sites) and in-situ measurements of conductivity, water and air temperature (three sites) are also measured within SHEN. Here we provide an overview and timeline of the SWAS-VTSSS stream water monitoring program, summarize the field and laboratory methods, describe the water chemistry and hydrologic data sets, and document major watershed disturbances that have occurred during the program history. Website links and instructions are provided to access the stream chemistry and time-series monitoring data in open-access federal databases. The purpose of this publication is to promote awareness of these unique, long-term data sets for wider use in catchment studies. The water chemistry and hydrologic data can be used to investigate a wide range of biogeochemical research questions and provide key inputs for models of these headwater stream ecosystems. SWAS-VTSSS is an ongoing program and quality assured data sets are uploaded to the databases annually.  相似文献   
6.

Within the Ararat Valley (Armenia), a continuously growing water demand (for irrigation and fish farming) and a simultaneous decline in groundwater recharge (due to climate change) result in increasing stress on the local groundwater resources. This detrimental development is reflected by groundwater-level drops and an associated reduction of the area with artesian conditions in the valley centre. This situation calls for increasing efforts aimed at more sustainable water resources management. The aim of this baseline study was the collection of data that allows for study on the origin and age distribution of the Ararat Valley groundwater based on environmental tracers, namely stable (δ2H, δ18O) and radioactive (35S, 3H) isotopes, as well as physical-chemical indicators. The results show that the Ararat Valley receives modern recharge, despite its (semi-)arid climate. While subannual groundwater residence times could be disproved (35S), the detected 3H pattern suggests groundwater ages of several decades, with the oldest waters being recharged around 60 years ago. The differing groundwater ages are reflected by varying scatter of stable isotope and hydrochemical signatures. The presence of young groundwater (i.e., younger that the 1970s), some containing nitrate, indicates groundwater vulnerability and underscores the importance of increased efforts to achieve sustainable management of this natural resource. Since stable isotope signatures indicate the recharge areas to be located in the mountains surrounding the valley, these efforts must not be limited to the central part of the valley where most of the abstraction wells are located.

  相似文献   
7.
Individuals of some benthic species swim out of or away from the sediment surface into the water column, i.e., they emerge. Individuals of both emergent and nonemergent benthic species can be entrained by near-bottom flows. Both emergence and entrainment are of interest, e.g., for their roles in benthopelagic coupling, but the controlling factors are poorly understood. Our experiments with benthic copepods from contrasting environments showed that a factor (or factors) associated with the onset of darkness, rather than an endogenous rhythm, controls their dusk emergence. In addition, we argue that entrainment and emergence can interact in at least two ways: (1) Light-induced changes in oxygenation of the sediment pore water may affect the entrainment flux of benthic copepods and (2) if large numbers of individuals are entrained in the time leading up to sunset, few will remain in the sediment to be part of the dusk peak in emergence.  相似文献   
8.
Long-term considerations of repeated and increasing sand extraction on the Netherlands Continental Shelf (North Sea) may lead to the creation of a mega-scale extraction trench in front of the Dutch coast (length hundreds of km, width over 10 km, depth several m). We investigate the impact of such a huge topographic intervention on tidal dynamics, which is a key aspect in hydrodynamics, and indirectly also affecting morphodynamics and ecology.  相似文献   
9.
The architecture of the Critical Zone, including mobile regolith thickness and depth to the weathering front, is first order controlled by advance of a weathering front at depth and transport of sediment at the surface. Differences in conditions imposed by slope aspect in the Gordon Gulch catchment of the Boulder Creek Critical Zone Observatory present a natural experiment to explore these interactions. The weathering front is deeper and saprolite more decayed on north-facing than on south-facing slopes. Simple numerical models of weathering front advance, mobile regolith production, and regolith transport are used to test how weathering and erosion rates interact in the evolution of weathered profiles. As the processes which attempt are being made to mimic are directly tied to climate variables such as mean annual temperature, the role of Quaternary climate variation in governing the evolution of Critical Zone architecture can be explored with greater confidence.  相似文献   
10.
This paper resolves the origin of clay hummock micro-topography in seasonal wetlands of the Drakensberg Foothills, providing a review and appraisal of previously-suggested mechanisms of hummock formation in the context of new field and laboratory data. Field surveys revealed neo-formation of clay hummocks in a river channel that had been abandoned in c.1984. Fresh earthworm castings were located atop hummocks protruding from inundated abandoned channel margins. Earthworm castings, and sediment cores taken in hummocks and adjacent hollows, were analysed for soil-adsorbed carbon and nitrogen using an HCN analyser, and for 210Pb activity using alpha-geochronology. 210Pb activity profiles suggest relative enrichment of the isotope in hummocks, and relative depletion in adjacent hollows. Earthworm castings are characterised by very high 210Pb activity, as well as high C and N contents. Hummocks have significantly higher C and N contents than adjacent hollows. Results suggest that it is the foraging activity of earthworms in litter-rich seasonal wetland hollows, and repeated excretion of castings atop adjacent hummocks, that is responsible for the elemental enrichment observed. The paper presents a conceptual model of hummock formation in wetlands through interactions between hydrogeomorphology and earthworm activity, and illustrates a mechanism of biogeomorphic inheritance through which ordered patterns of preferential flow can emerge in ecosystems. Further implications of hummock formation and nodal accumulation of nutrients are considered in relation to wetland resilience and regulatory ecosystem service provision.© 2018 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号