首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  国内免费   1篇
测绘学   3篇
地球物理   14篇
地质学   13篇
海洋学   3篇
综合类   1篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2007年   2篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  2002年   2篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
The hydrogeochemical characteristics of shallow groundwater in the Grombalia region, northeastern Tunisia, were investigated to evaluate suitability for irrigation and other uses and to determine the main processes that control its chemical composition. A total of 21 groundwater samples were collected from existing wells in January–February 2015 and were analyzed for the major cations and anions concentrations. Conductivity, pH, T°, O2 and salinity were also measured. Interrelationships between chemical parameters were determined by using the scatter matrix method. The suitability of groundwater for irrigation and other uses was assessed by determining the sodium adsorption ratio, soluble-sodium percentage, total dissolved solids, total hardness, Kelly’s index and permeability index values of water samples. The spatial distribution of key parameters was assessed using a GIS-based spatial gridding technique. This analysis indicated that the chemical composition of groundwater in the study area is of Cl–SO4–Na–Ca mixed facies with concentrations of many chemical constituents exceeding known guideline values for irrigation. The salinity of groundwater is controlled by most dominant cation and anion (Na–Cl). A correlation analysis shows that Na+ is the dominant cation and that reverse ion exchange is a dominant process that controls the hydrogeochemical evolution of groundwater in the area. Geospatial mapping of hydrochemical parameters and indices analyzed with the USSL and Wilcox diagrams show distinctive areas of irrigation suitability. In contrast, 76.2% of samples fall in the highly doubtful to unsuitable category and indicate that the central and north-eastern parts of the study area are unsuitable for irrigation due to a high salinity and alkalinity.  相似文献   
2.
Urban floods pose a societal and economical risk. This study evaluated the risk and hydro-meteorological conditions that cause pluvial flooding in coastal cities in a cold climate. Twenty years of insurance claims data and up to 97 years of meteorological data were analysed for Reykjavík, Iceland (64.15°N; <100 m above sea level). One third of the city's wastewater collection system is combined, and pipe grades vary from 0.5% to 10%. Results highlight semi-intensive rain (<7 mm/h; ≤3 year return period) in conjunction with snow and frozen ground as the main cause for urban flood risk in a climate which undergoes frequent snow and frost cycles (avg. 13 and 19 per season, respectively). Floods in winter were more common, more severe and affected a greater number of neighbourhoods than during summer. High runoff volumes together with debris remobilized with high winds challenged the capacity of wastewater systems regardless of their age or type (combined vs. separate). The two key determinants for the number of insurance claims were antecedent frost depth and total precipitation volume per event. Two pluvial regimes were particularly problematic: long duration (13–25 h), late peaking rain on snow (RoS), where snowmelt enhanced the runoff intensity, elongated and connected independent rainfall into a singular, more voluminous (20–76 mm) event; shorter duration (7–9 h), more intensive precipitation that evolved from snow to rain. Closely timed RoS and cooling were believed to trigger frost formation. A positive trend was detected in the average seasonal snow depth and volume of rain and snowmelt during RoS events. More emphasis, therefore, needs to be placed on designing and operating urban drainage infrastructure with regard to RoS co-acting with frozen ground. Furthermore, more detailed, routine monitoring of snow and soil conditions is important to predict RoS flood events.  相似文献   
3.
The investigation area is located in the most southern part of Sinai Peninsula boarded from the west by the Gulf of Suez and from the east by the Gulf of Aqaba. The present study concerns the application of stacking and persistent scattering of SAR interferometry in order to monitor ground deformation in the southern part of Sharm El-Shiekh area. The specific techniques were applied in order to reduce the influence of atmospheric effects on the ground deformation estimates. For this purpose a total number of 26 ENVISAT ASAR scenes covering the period between 2003 and 2009 were processed and analyzed. Interferometric processing results show both patterns of uplift and downlift in the study area. Specifically an area along the coastline with a N–S direction, corresponding to the build up zone of Sharm El-Sheikh, shows annual average subsidence rates between 5 and 7 mm/yr along the line of sight (LOS). On the contrary, Sharm El-Maya, an inner zone, parallel to the above subsided area; shows maximum slant range uplift of 5 mm/yr. The obtained results of both stacking and persistent scattering indicate that the ground deformation in Sharm El-Sheikh–Ras Nasrani coastal zone is attributed to several effecting factors compromising water pumping, lithology, seismicity, and possible active fracture. The contribution of all these factors is discussed in the context.  相似文献   
4.
The extraction of object features from massive unstructured point clouds with different local densities, especially in the presence of random noisy points, is not a trivial task even if that feature is a planar surface. Segmentation is the most important step in the feature extraction process. In practice, most segmentation approaches use geometrical information to segment the 3D point cloud. The features generally include the position of each point (X, Y and Z), locally estimated surface normals and residuals of best fitting surfaces; however, these features could be affected by noisy points and in consequence directly affect the segmentation results. Therefore, massive unstructured and noisy point clouds also lead to bad segmentation (over-segmentation, under-segmentation or no segmentation). While the RANSAC (random sample consensus) algorithm is effective in the presence of noise and outliers, it has two significant disadvantages, namely, its efficiency and the fact that the plane detected by RANSAC may not necessarily belong to the same object surface; that is, spurious surfaces may appear, especially in the case of parallel-gradual planar surfaces such as stairs. The innovative idea proposed in this paper is a modification for the RANSAC algorithm called Seq-NV-RANSAC. This algorithm checks the normal vector (NV) between the existing point clouds and the hypothesised RANSAC plane, which is created by three random points, under an intuitive threshold value. After extracting the first plane, this process is repeated sequentially (Seq) and automatically, until no planar surfaces can be extracted from the remaining points under the existing threshold value. This prevents the extraction of spurious surfaces, brings an improvement in quality to the computed attributes and increases the degree of automation of surface extraction. Thus the best fit is achieved for the real existing surfaces.  相似文献   
5.
6.
A multiple attribute risk assessment approach using a fuzzy inference system is developed in this work. The approach is based on the use of fuzzy sets, a rule base and a fuzzy inference engine. Traditional input probabilities and consequences used in risk assessment are represented by fuzzy sets to take into account uncertainties associated with the assignment of their values. The output risk values can be presented as crisp values or fuzzy sets with associated degree of membership. The fuzzy inference system FIS is used as an alternative approach to qualitative risk matrix techniques currently used in many industries and by ship classification societies. Two approaches for fuzzy inference are adopted. These include the Mamdani approach in which output risk values are fuzzy sets and the Sugeno method of fuzzy inference, in which output risk values are constant or linear.The use of a fuzzy set approach is particularly suited for handling multiple attribute risk problems with imprecise data. It improves upon existing qualitative methods and allows the ranking of risk alternatives based on a unified fuzzy risk index measure. Results show that while the Mamdani method is intuitive and well suited to human input, the Sugeno method is computationally more efficient and guarantees continuity of the final risk output surface. Results also show that computed risk values using a fuzzy risk index measure are consistent with those obtained using a qualitative risk matrix approach. The proposed methodology is also applicable to other ship operating modes such as transit in open sea and/or entering/leaving port. A case study for a liquefied natural gas LNG ship loading/offloading at the terminal is presented to demonstrate the developed approach capability.  相似文献   
7.
Evaluation of pile foundation response to lateral spreading   总被引:7,自引:0,他引:7  
The effects of liquefaction on deep foundations are very damaging and costly, and they keep recurring in many earthquakes. The first part of the paper reviews the field experience of deep foundations affected by liquefaction during earthquakes in the last few decades, as well as the main lessons learned. The second part of the paper presents results of physical modeling of deep foundations in the presence of liquefaction conducted by the authors and others at the 100g-ton RPI centrifuge. In the last decade centrifuge modeling has been identified as a key tool to identify and quantify mechanisms, calibrate analyses and evaluate retrofitting strategies for pile foundations. Results are presented of centrifuge models of instrumented pile foundations subjected to lateral spreading, including single pile and pile groups, 2- and 3-layer soil profiles, mass and stiffening elements above ground to incorporate the effect of the superstructure, and evaluation of proposed retrofitting strategies. Interpretations of these centrifuge experiments and their relation to field observations and soil properties.  相似文献   
8.
9.
Two procedures are developed and implemented in a hybrid simulation system (HSS) with the aim of enhancing the accuracy and reliability of the online, i.e. pseudo‐dynamic, test results. The first procedure aims at correcting the experimental systematic error in executing the displacement command signal. The error is calculated as the difference between command and feedback signals and correlated to the actuator velocity using the least‐squares method. A feed‐forward error compensation scheme is devised leading to a more accurate execution of the test. The second procedure employs mixed variables with mode switching between displacement and force controls. The newly derived force control algorithm is evaluated using a parametric study to assess its stability and accuracy. The implementation of the mixed variables procedure is designed to adopt force control for high stiffness states of the structural response and displacement control otherwise, where the resolution of the involved instruments may favour this type of mixed control. A simple pseudo‐dynamic experiment of steel cantilever members is used to validate the HSS. Moreover, two experiments as application examples for the two developed procedures are presented. The two experiments focus on the seismic response of (a) timber shear walls and (b) reinforced concrete frames with and without unreinforced masonry infill wall. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号