首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   60篇
  国内免费   9篇
测绘学   53篇
大气科学   66篇
地球物理   212篇
地质学   289篇
海洋学   81篇
天文学   131篇
综合类   6篇
自然地理   86篇
  2023年   4篇
  2022年   6篇
  2021年   27篇
  2020年   12篇
  2019年   19篇
  2018年   34篇
  2017年   36篇
  2016年   49篇
  2015年   31篇
  2014年   27篇
  2013年   56篇
  2012年   42篇
  2011年   47篇
  2010年   42篇
  2009年   59篇
  2008年   44篇
  2007年   45篇
  2006年   37篇
  2005年   23篇
  2004年   42篇
  2003年   30篇
  2002年   22篇
  2001年   19篇
  2000年   27篇
  1999年   14篇
  1998年   12篇
  1997年   8篇
  1996年   11篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1991年   8篇
  1990年   5篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   6篇
  1983年   12篇
  1982年   6篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
排序方式: 共有924条查询结果,搜索用时 15 毫秒
1.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
2.
In 1994, a network of small catchments (GEOMON) was established in the Czech Republic to determine input–output element fluxes in semi-natural forest ecosystems recovering from anthropogenic acidification. The network consists from 16 catchments and the primary observations of elements fluxes were complemented by monitoring of biomass stock, element pools in soil and vegetation, and the main water balance components. Over last three decades, reductions of SO2, NOx and NH3 emissions were followed by sulphur (S) and nitrogen (N) deposition reductions of 75% and 30%, respectively. Steeper declines of strong acid anion concentrations compared to cations (Ca, Mg, Na, K, NH4) in precipitation resulted in precipitation pH increase from 4.5 to 5.2 in bulk precipitation and from 4.0 to 5.1 in spruce throughfall. Stream chemistry responded to changes in deposition: S leaching declined. However at majority of catchments soils acted as a net source of S to runoff, delaying recovery. Stream pH increased at acidic streams (pH < 6) and aluminium concentration decreased. Stream nitrate (NO3) concentration declined by 60%, considerably more than N deposition. Stream NO3 concentration was tightly positively related to stream total dissolved nitrogen to total phosphorus (P) ratio, suggesting the role of P availability on N retention. Trends in dissolved organic carbon fluxes responded to both acidification recovery and to runoff temporal variation. An exceptional drought occurred between 2014 and 2019. Over this recent period, streamflow decreased by ≈ 40% on average compared to 1990s, due to the increases of soil evaporation and vegetation transpiration by ≈ 30% and declines in precipitation by ≈ 15% on average across the elevational gradient. Sharp decreases of stream runoff at catchments <650 m a.s.l. corresponded to areas of recent forest decline caused by bark beetle infestation on drought stressed spruce forests. Understanding of the interactions among legacies of acidification and eutrophication, drought effects on the water cycle and forest disturbance dynamics is requisite for effective management of forested ecosystems under anthropogenic influence.  相似文献   
3.
Marasco  David  Murray-Tuite  Pamela  Guikema  Seth  Logan  Tom 《Natural Hazards》2020,103(2):2459-2487

Hurricane Irma caused widespread evacuation activity across Florida and some of its neighboring states in September of 2017. The researchers gathered estimated travel times from the Google Distance Matrix API over about a month to identify and analyze evacuation periods on roads in Florida, Georgia, and South Carolina during this time. Travel time data were mathematically adjusted to show more realistic estimations. Both sets of travel times were then graphed, with the assumption that elevated travel times prior to and during hurricane landfall were indicative of evacuation activity. The study generally corroborated the well-established daytime evacuation preference. However, not all evacuation periods followed the daytime travel preference, and at least one nighttime evacuation may have been caused by flooding. In another case, later elevated travel coincided with significant power loss. Finally, the Florida data suggest that most of the evacuation traffic departed before local jurisdictions’ recommended evacuation start times.

  相似文献   
4.
From 2011 to 2019, mercury (Hg) stores and fluxes were studied in the small forested catchment Lesní potok (LES) in the central Czech Republic using the watershed mass balance approach together with internal measurements. Mean input fluxes of Hg via open bulk deposition, beech throughfall and spruce throughfall during the periodwere 2.9, 3.9 and 7.6 μg m−2 year−1, respectively. These values were considerably lower than corresponding deposition Hg fluxes reported in the early years of the 21st century from catchments in Germany. Current bulk precipitation inputs at unimpacted Czech mountainous sites were lower than those in Germany. The largest Hg inputs to the catchment were via litterfall, averaging 22.6 and 17.8 μg m−2 year−1 for beech and spruce stands. The average Hg input, based on the sum of mean litterfall and throughfall deposition, was 23.0 μg m−2 year−1, compared to the estimated Hg output in runoff of 0.5 μg m−2 year−1, which is low compared to other reported values. Thus, only ~2% of Hg input is exported in stream runoff. Stream water Hg was only weakly related to dissolved organic carbon (DOC) but both concentrations were positively correlated with water temperature. The estimated total soil Hg pool averaged 47.5 mg m−2, only 4% of which was in the O-horizon. Thus Hg in the O-horizon pool represents 72 years of deposition at the current input flux and 3800 years of export at the current runoff flux. Age-dating by 14C suggested that organic soil contains Hg from recent deposition, while mineral soil at 40–80 cm depth contained 4400-year old carbon, suggesting the soil had accumulated atmospheric Hg inputs through millennia to reach the highest soil Hg pool of the soil profile. These findings suggest that industrial era intensification of the Hg cycle is superimposed on a slower-paced Hg cycle during most of the Holocene.  相似文献   
5.
The Northland region of New Zealand includes numerous high-value, macrophyte-dominated dune lakes. Recent water policy reforms offer limited guidance on managing for aquatic macrophytes. In addition, dune lake histories are poorly known as regular monitoring dates to 2005 AD. Here, ca. 4000 years of lake functional behaviour is reconstructed from sedimentary archives in two Northland dune lakes (Humuhumu and Rotokawau). Results demonstrated that macrophyte dominance is sensitive to catchment erosion and hydrological drawdown. Degradation of macrophyte communities occurred in the nineteenth and twentieth centuries, earlier at Lake Humuhumu than Lake Rotokawau (post-1880 AD and post-1930 AD, respectively). In both lakes, increased erosional influx reduced macrophyte productivity, before later increases to wider trophic state (post-1970 AD). Lake-level decline is linked to increased nutrient loading at Lake Rotokawau but less so, Lake Humuhumu which is more strongly groundwater-fed. In Northland dune lakes, water-level reduction and erosional influx from land use have driven macrophyte degradation.  相似文献   
6.
Most structures are subjected to more cyclic loads during their life time than static loads. These cyclic action could be a result of either natural or man-made activities and may lead to soil failure. In order to understand the response of the foundation and its interaction with these complex cyclic loadings, various researchers have over the years developed different constitutive models. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model-based identification of the cyclic constitutive parameters which to a large extent govern the quality of the model output. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimisation strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However, for the back analysis (calibration) of the soil response to oscillatory load functions, this article gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high-quality solutions are obtained with minimum computational effort.  相似文献   
7.

This paper documents the application of a microdiamond-based approach to the estimation of diamond grade in the Pipe 1 kimberlite at the Koidu mine in Sierra Leone. A geological model of Pipe 1 was constructed to represent the distribution and volume of the dominant kimberlite units within the pipe. Bulk samples, along with representative microdiamond samples, were collected from these units at surface and were used to define the ratio between microdiamond stone frequency (+212 μm stones per kilogram) and recoverable macrodiamond grade (+1.2 mm carats per tonne; 1 carat = 0.2 g). These ratios were applied to a comprehensive, spatially representative microdiamond sample dataset and were combined with a spatial model of country-rock xenolith dilution within the pipe to estimate +1.2 mm recoverable grades. The resource estimate was reconciled with subsequent production results in the elevation range 160 to 100 m above sea level. Production results for each of the six 10 m benches covering this elevation range were compared to the estimated average grades for these zones in the pipe. For the five cases where most of the kimberlite mass on a given bench is represented in the production data, the results show a maximum discrepancy of 6% between predicted and reported production grade with no indication of any consistent bias. This indicates that, when supported by a sound geological model and suitable microdiamond and macrodiamond data, the microdiamond-based estimation approach can provide reliable constraints on macrodiamond grade, even in the case of geologically complex bodies such as Koidu Pipe 1.

  相似文献   
8.
Tidal marsh (re)creation on formerly embanked land is increasingly executed along estuaries and coasts in Europe and the USA, either by restoring complete or by reduced tidal exchange. Ecosystem functioning and services are largely affected by the hydro-geomorphologic development of these areas. For natural marshes, the latter is known to be steered by feedbacks between tidal inundation and sediment accretion, allowing marshes to reach and maintain an equilibrium elevation relative to the mean sea level. However, for marsh restoration sites, these feedbacks may be disturbed depending on the restoration design. This was investigated by comparing the inundation-elevation change feedbacks in a natural versus restoration site with reduced tidal exchange in the Scheldt estuary (Belgium). This study analyzes long-term (9 years) datasets on elevation change and tidal inundation properties to disentangle the different mechanisms behind this elevation-inundation feedback. Moreover, subsequent changes in sediment properties that may affect this feedback were explored. In the restoration area with reduced tidal exchange, we found a different elevation-inundation feedback than on natural marshes, which is a positive feedback on initially high sites (i.e., sediment accretion leads to increasing inundation, hence causing accelerating sediment accretion rates) and a gradual silting up of the whole area. Furthermore, there is evidence for the presence of a relict consolidated sediment layer. Consequently, shallow subsidence is less likely to occur. Although short-term ecological development of the tidal marsh was not impeded, long-term habitat development may be affected by the differences in hydro-geomorphological interactions. An increase of inundation frequency on the initially high sites may cause inhibition of habitat succession or even reversed succession. Over time, the climax state of the restoration area may be different compared to natural marshes. Moreover, sediment-related ecosystem services, such as nutrient and carbon burial, may be positively influenced because of continuing sedimentation, although flood water storage potential will decrease with increasing elevation. Depending on the restoration goals, ecosystem trajectories and delivery of ecosystem services can be controlled by adaptive management of the tidal volume entering the restoration area.  相似文献   
9.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
10.
Mohyla  Tomáš  Boháč  Jan  Mašín  David 《Acta Geotechnica》2021,16(9):2837-2849
Acta Geotechnica - The experimental data dealing with the so-called small strain stiffness of soils are indispensable in developing and calibrating advanced numerical models. A literature review...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号